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ABSTRACT 

T h i s   r e p o r t  i s  concerned   wi th   op t imum  guidance   for   in te rp lane tary  

m i s s i o n s   u s i n g   e i t h e r  a h i g h   t h r u s t   o r  a low t h r u s t   e n g i n e .  The guid-  

ance  problem is f o r m u l a t e d   a s  a problem  in  optimum con t ro l   t heo ry ,   and  

c o n t r o l   t h e o r y   t e c h n i q u e s  are a p p l i e d   t o  i t s  s o l u t i o n .  For a h igh  

t h r u s t   e n g i n e   t h i s   i n v o l v e s   t h e   m i n i m i z a t i o n   o f   t h e   t o t a l   a v e r a g e   v e l o -  

c i t y   c o r r e c t i o n   d u r i n g   m i d c o u r s e   f o r   s p e c i f i e d   t e r m i n a l   a c c u r a c i e s   i n  

t h e   p r e s e n c e   o f   i n i t i a l   i n j e c t i o n   e r r o r s ,   s t a t e  measurement e r r o r s ,   a n d  

con t ro l   mechan iza t ion   e r ro r s .  The s o l u t i o n  i s  f i r s t   p r e s e n t e d   f o r   t h e  

case  where (1) only  one  component   of   the   posi t ion a t  t h e   t e r m i n a l   t i m e  

i s  t o  be s p e c i f i e d ,  (2 )  t h e   i n f o r m a t i o n   r a t e   h i s t o r i e s   a r e   s p e c i f i e d   i n  

advance, ( 3 )  t h e r e  i s  neg l ig ib l e   eng ine   mechan iza t ion   e r ro r ,   and  (4)  t h e  

magni tude   o f   the   cont ro l  is l i n e a r l y  related t o  t h e   p r e d i c t e d  miss d i s -  

t ance .  The s o l u t i o n  i s  then   ex tended   to   four   separa te   cases ,   namely ,  

(1) t h e  rms value  of  more  than  one  terminal  component i s  s p e c i f i e d ,  

(2)  t h e   " i n f o r m a t i o n   r a t e "   h i s t o r i e s  (i. e . ,   t h e   r a t e  of measurement  and 

t h e   t y p e   o f   o b s e r v a t i o n s )  are t o   b e   o p t i m i z e d ,  ( 3 )  engine  mechanizat ion 

e r r o r s  are t aken   i n to   accoun t ,   and  (4) non l inea r   f eedback  i s  al lowed.  

For t h e  low t h r u s t   m i s s i o n  it i s  assumed t h a t   t h e   e n g i n e  i s  

ope ra t ed  a t  a c o n s t a n t   s p e c i f i c   i m p u l s e   a n d   t h a t  it i s  tu rned  on on ly  

i n   t h e   v i c i n i t i e s  o f   t h e   d e p a r t u r e   p l a n e t   a n d   t h e   t a r g e t   p l a n e t .  

Hence,  when l eav ing   t he   depa r tu re   p l ane t ,   t he   op t imiza t ion   p rob lem 

invo lves   r each ing  a s p e c i f i e d   e n e r g y   a n d   a s y m p t o t i c   a n g u l a r   d i r e c t i o n  
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w i t h  minimum mass expend i tu re  (minimum time, i n   t h i s   c a s e ) .  When 

a p p r o a c h i n g   t h e   t a r g e t   p l a n e t ,   t h e  optimum  turn-on time must a l s o  

be  determined.  The  guidance  problems for t h e  low th rus t   .m i s s ion  

are so lved   by   us ing  a ne ighbor ing  optimum c o n t r o l  scheme,  which 

g e n e r a t e s  a l i n e a r   f e e d b a c k   c o n t r o l  law. For both   h igh   and  low t h r u s t  

miss ions   numer ica l   and ,   in  some c a s e s ,   a n a l y t i c   r e s u l t s  are p r e s e n t e d  

t o   s e r v e  as a g u i d e   i n   e v a l u a t i n g   t h e   v a r i o u s  optimum  and  sub-optimurn 

guidance   t echniques .  
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1. INTRODUCTION 

1.1 Motivation - 
One phase  of  research i n   t h e  field of f'uture manned space f l i g h t s  

concerns  the problem of guidance. A comprehensive presentation of feasible 

guidance schemes and much of the  work i n  navigation is contained i n  a recent 

book by  Eattin. '* B r o a d l y  speaking, the problem  of guidance is the  deter-  

mination of a control  program which w i l l  s teer   the   vehic le   to  i ts  desired 

destination. This control  program w i l l  depend on the  particular  mission, 

the  measured information  concerning  the  trajectory, and the way i n  which the  

control is t o  be  executed. A n  optimum guidance program is one  which w i l l  

accomplish  such a t a sk   i n  a most economical way. For  our  purpose, t h i s  

implies  the consumption  of the  least amount  of corrective  -propellant. 

Hence, the  problem of optimum guidance  can be visualized as a search  for  a 

control program which produces a correction  schedule  in a 'best" fashion. 

The control  progrm  uses a set of  measured information  concerning  the tra- 

jectory and it must meet some fixed  error  cri terion.  This  has the typica l  

form of a problem i n  optimal  control, a f i e l d  which has  received  considerable 

attention  over  the  past  decade. It is, therefore,  desirable  to  formulate 

the  problem  of optimum guidance as a problem in  optimal  control and apply 

control  theory  techniques  for i ts  solution. 

The  amount of corrective  propellant, which is the  measure of  the  per- 

formance we have  adopted,  depends on the  type of engines  used  for  guidance. 

We sha l l   no t  be concerned w i t h  identifying  the  various  types  of  engines,  but 

w i l l ,  instead,  classify them in to  two major groups - the  high-thrust  engine 

and the  lar-thrust  engine.  This  report is concerned  with  the problem of 

optimum guidance for  interplanetary  missions  using  either a high-thrust 

* 
RefeA-ences used i n  each  chapter are l i s t e d  at the  end of that  chapter. 
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engine o r  a low-thrust  engine. Although both problems  belong t o   t h e  realm 

of optimal  control,   the  solutions  in  the two cases are very different .   In  

the  high-thrust   case,  it is assumed t h a t  a separate engine is  used after 

boost t o  make the  t ra jectory  correct ions.  I n  t h i s  case,  the  propellant is 

measured by   t he   t o t a l  amount of velocity  correction  required. By contrast ,  

in  the  low-thrust   vehicle,   the same engine is  used for guidance as well as 

fo r  the actual  mission. The propellant, i n  t h i s  case, l a  measured by the 

t o t a l  time during which the engine is on. 

1.2 Objective 

The objective of t h i s  work i s  t o  provide: 

o A mathematical model for  studying  the  physical problem 

of optimum guidance. 

o A solution  of  such a problem  by formulating it as a problem 

in  optimal  control and applying  control  theory  techniques 

f o r  i ts  solution. 

o Some numerical work to evaluate  the  various optimum and 

sub-optimum guidance  techniques. 

It is hoped that   the   var ious  solut ions we have obtained w i l l  shed 

much insight  on future invest igat ions  in   the field of  interplanetary 

guidance. 

1.3 Outline 

This  report i s  divided  into  four  chapters.  Chapter 1 is  the Intro- 

duction.  Chapter 2 considers  the problem  of optimum midcourse  guidance 

using  high-thrust  engines. It has  ten  sections  giving  the  formulation  of' 

the  problem, the  approaches,  and  the  results of the  various  extensions of  an 

optimum guidance  theory  developed  by Breakwell and Str iebel .2  Chapter 3 con- 

1-2 
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siders  the problem of optimum guidance  using  law-thrust  engines.  Unlike 

the work  on high  thrust,  the  guidance is assumed to   t ake   p lace   on ly   in  the 

v ic in i t ies  of the  departure  planet and the  target  planet.  No consideration 

is given t o   t h e  midcourse  guidance in   t ha t   t he  midcourse t ra jectory is 

assumed t o  be  determined  by  the  energy  and  the  asymptotic  direction of the 

vehicle  leaving  the  vicinity of the  departing  planet.  In view  of the 

dis t inct   d i f ference between the two cases,  Chapters 2 and 3 are organized 

so that   they are self-contained. The last chapter  gives a summary of the 

resu l t s  we have  obtained  in  this  study and  recommendations for  future  inves- 

t igations.  

1.4 Summary of Past Work 

During the  past  few years,  there have  been many published  papers on 

midcourse  guidance for   lunar  and interplanetary  missions  using  high-thrust 

engines. As representative, we c i t e   t he  work of Noton, Cutting and Barnes, 3 

Gates,  Scull and Watkins concerning  ground-based  trackings,  and  the  recent 

work of Smith,5 Sternj6 Curdendale and Pfeiffer ,7  Bat t in , ’  and o thers   for  

proposing  feasible  guidance schemes allowing  arbitrary  information  rates. 

4 

Among those who have attempted t o  optimize  the  trajectory  correction  schedule 

are  Lawden,g Breakwell,”  and Pfeiffer . l1  Lawden and  Breakwell  have  found 

solut ions  to   the  t iming of the  corrective impulses so as to   require ,  on 

the  average,  the  least  fuel  expenditure  for  the  special  case where each 

correction is  a fu l l   cor rec t ion  (a full correction  completely  nulls  out  the 

predicted  miss-distance) and where the  error  in  estimating  miss-distance is 

due e n t i r e l y   t o  an error  in  est’imating  the  instantaneous  velocity  vector. 

The solution of Pfeiffer ,  which is concerned  with  minimizing  the  terminal 

miss-distance when a fixed amount of f u e l  is available, shows tha t   the  

timing of the  correct ive  thrusts  depends on the  estimated  miss-distance. 



It a l s o   c a l l s   f o r  full corrections.  Since  information  prior to   cor rec t ion  

is not  perfect, it may be more economical t o  undercorrect. The only pub-. 

lished work  on the problem of optimum guidance  which r e su l t s   i n  an  under- 

corrective  strategy and a t  the same time allovs arbitrary information rates 

appears t o  be that by  Breakwell  and St r iebeLc It was assumed tha t   the  

magnitude of the  control  acceleration is l inear ly   re la ted  to   the  predicted 

miss-distance. Their r e s u l t  shows that, in  the  absence of mechanization 

errors,   the optimum corrections axe continuous  instead of discrete  and the 

optimum strategy  involves  an  init ial   period of no control  followed by a 

period of continuous  control and then a period of no control  near  the end. 

In   cont ras t   to   the  work  on high-thrust  guidance,  there has been very 

l i t t l e  published work  on the problem of  guidance  using lar-thrust engines. 

The first published work appears t o  be by Battin and Millerv who have 

devised a feasible  guidance scheme for  a variable  thrust   vehicle on a 

lunar  mission,  assuming t h a t  guidance  takes  place  both  while  spiraling  out 

from Earth  and  while  apprcaching  the Moon. In  the  area of midcourse  guidance, 

we c i t e   t he  work of Pfeiffer13 who has  considered  such  problems by using a 

penalty  function which is equivalent t o  a quadratic form of   the   f ina l   s ta te  

vector. H i s  solution is not optimum i n  the  sense of meeting  specified  ter- 

minal  constraints. The recent work of  Mitchell14 t r e a t s   t h e  problem by 

linearizing  along a predetermined optimum trajectory and uses a "method  of 

adjoints.  It is not  the same as the concept of second var ia t ion   in   the  

calculus of variations which is the  technique  used  in  this  report. The 

d i f fe rence   l i es   in   the  loss cr i te r ion  which comes natural ly   in   the  use of 

second variation. 

1.5 Notation 

A. Unless  otherwise  stated,  capital  letters A, B, . . . denote  matrices 

and small l e t t e r s  a, b,... denote  vectors. Small le t ters   with  subscr ipts  a i d  ' 



I 

b (or ai, bi) denote  elements of the matricee A, B (or  vector a, b). The 

transpose of the matrix A (or  vector a) is denoted by A '  (or a ') and 

11a11 = a' a. 

id 

2 

B. The references  cited  in  each  chapter are listed at  the end of 

that chapter. 

C. Quations and f igures   in  each  chapter  are  identified ae fglluws: 

Equation (I, J) (or Figure (1.J)) impliee the J'e equation (or f igure)   in  

the I aection. There are no croes  reference6 among chapters. 
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2. MIDCOURSE  GUIDANCE  FOR  H1GH"I'HRUST  INTERPLANETARY  TRANSFER 

2.1 Introduction 

Consider a space  vehicle  which  is  in  free fall following  in3ection. 

The  only  external  controllable  force  acting  on  the  vehicle is the  thrust 

during  short  bursts  when  corrections  to  the  trajectory  are  executed. 

Because  the  injection  conditions  are  not  perfect,  the  vehicle  will  depart 

from  its  desired  (or  nominal)  trajectory  and  it  is  the  function of the 

guidance  system  to: (1) perform  measurements  (whether  on  board  or  not) 

from  which  the  actual  trajectory  can  be  estimated,  and (2) apply  trajec- 

tory  corrections  to  insure  the  arrival of the  vehicle  in  the  close  vicinity 

of  the  planet. 

Lawden'* and  Breakwell  have  found  solutions  to  the  timing of cor- 2 

rective  impulses  for  the  special  case  where  each  correction  is  a full 

correction  which  nulls  out  the  estimated  miss-distance,  and  where  the 

error  in  estimating  miss-distance is due  entirely  to  an  error  in  estimating 

the  instantaneous  velocity  vector.  Their  solution  consists  essentially 

of an  early  correction  to  compensate  for  the  initial  errors  and  further 

corrections,  each  two-thirds of the  remaining  distance  to  the  target. 

Battin  has  proposed a criterion  for  the  timing  of  the  corrective  action 3 

based  on  the  ratio  of  the  required  velocity  correction  to  the  uncertainty 

in  estimated  miss-distance,  again  assuming  that  each  correction is a full 

correction.  Battin's  solution,  although  valid  for  arbitrary  information 

rates,  does  not  minimize  the  total  velocity  corrections.  The  solution 

obtained  by  Pfeiffer  (which is concerned  with  minimizing  the  terminal 

miss  distance)  shows  that  the  timing  of  the  corrective  thrusts  depends 

on  the  estimated  miss-distance.  It  also  calls  for  full  corrections. 

4 

* References  referred  to  in  this  chapter  are  listed  at  the  end of this 
chapter. 
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Since  information  prior t o  a correction i s  not  perfect and fur ther  

corrections w i l l ,  in  general,  be  required, it may be more economical t o  

under-correct. "his report,  therefore,  re-examines  this problem  of opt i -  

m u m  guidance ( i .  e., the  problem of  minimizing t h e   t o t a l  average  velocity 

correct ion  for   specif ied rms terminal  accuracies i n  the  presence  of 

i n i t i a l   i n j ec t ion   e r ro r s ,  state measurement e r rors  and control mechani- 

zation  errors) by formulating it as a problem in  stochastic  optimal con- 

t r o l  and  applying  control  theory methods f o r  i t s  solution. It r e s u l t s   i n  

a theory which i s  applicable  to  arbitrary  information rates and in   t he  

same time minimizes the  required  average  total   velocity  correction con- 

s i s t e n t  with a specified  reasonable  terminal  accuracy. Ve s h a l l  concern 

ourselves  to  cases  involving  errors  only  in  the  plane  of  the  transfer 

orb it. 

The or ig ina l  work following t h i s  approach was done  by Breakwell 

and St r iebe l   in  a paper en t i t l ed  "Minimum Effort  Control  in  Interplane- 

tary Guidance." It was assumed tha t   t he  magnitude  of the  control  acce- 

lerat ion i s  l inearly  related  to  the  predicted  miss-distance and points 

in   the  direct ion of m a x i m u m  effectiveness.  The paper showed tha t ,   in   the  

absence  of  mechanization  errors,  the optimum corrections  are  continuous 

instead  of  discrete.  The solution is eas i ly  camputable i n  terns of 

general  information  rates. We shall c a l l  t h i s  the  Basic Minimum Effor t  

Theory  and, fo r   t he  sake  of  completeness,  include a brief review  of the 

theory  in   this   report .  The remaining  parts  of  this  report  are  devoted 

t o  various  extensions of t h i s   b a s i c  minimum effort  theory. 

5 

The assumptions  necessary fo r  the development of  the  basic minimum 

effort theory were: 

o The m s  value  of  only one  component of the  posit ion a t  

terminal time is specified. 
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o The magnitude  of the  control   accelerat ion is l inear ly  

related  to  the  predicted  miss-distance.  

o The information rate h is tor ies  are specif ied  in  advance. 

o There is  negligible  engine  mechanization  error. 

This  basic minimum effor t   theory is applicable t o   t h e  problem of variable 

t h e - o f - a r r i v a l  guidance  assuming t h a t  a l l  e r rors  l i e  in   the   t ransfer  

plane.  For example, consider the following problem: Suppose t h a t  a 

vehicle  travels  along a he l iocent r ic   e l l ipse  which meets  with a planet 

(whose gravi ty  f ie ld  is  ignored) moving i n  the same plane as the vehicle. 

Suppose fur ther   that   the   s tar t ing  posi t ion  (Earth)  is known, t h e   i n i t i a l  

velocity  vector is imperfectly known, and tha t  it is  desired to   con t ro l  

the  distance of c losest  approach but  not  (directly) the time  of c losest  

passage. Then, if the  x-axis is  chosen  perpendicular t o   t h e   r e l a t i v e  

velocity of approach to   the  planet   (see  Figure 1. l), it i s  des i r ed   t o  

control x(T) but  not  y(T), where T is  the nominal  time  of a r r iva l .  

Figure 1.1 

Various  extensions  of  the  basic minimum effor t   theory were 

developed removing  one or more of the many aesumptions  described above. 

The various  extensions  undertaken are l i s t e d  as follows: 
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o Extension  of the  theory t o   t h e  case when the  rms values of 

more than one terminal component are specified. 

o Extension of the  theory  to  include  the case when engine 

mechanization  errors are taken  Into  account. 

o Extension  of  the  theory t o  include  the  optimization  of  the 

information rate h i s to r i e s  (i.e., the  rate of measurement 

and the  type of  observations). 

o Extension of the theory t o  the case of allowing  nonlinear 

cont ro l   ( i .  e., remove the assumption of linear  feedback). 

No attempt is made i n  canbining  these  various  extensions t o  form a unified 

general  theory  since  the  computation  involved i n   g e t t i n g  a solut ion  for  

the  general   theory is  prohibitively  complicated. 

This  chapter is divided  into  ten  sections.  Section 2.1 in   the  

Introduction. The mathematical  statement of the  optimum guidance problem 

and the  equations  for  estimating i t s  t ra jector ies   based on noisy  observa- 

t ions  are given i n  Sections 2.2 and 2.3. Section 2.4 introduces  the 

concept  of  linear  control. The various  extensions  of  the  basic minimum 

theory  l is ted above as well as a review of the  basic  theory are given i n  

Sections 2 .5  t o  2.9. Each of these  sections is ,  more or  less,  self-con- 

tained.  In  general, we give  in  each  section  the  solution of the problem 

we have  proposed, i ts  method of solution and usually a simple example 

i l lus t ra t ing   the   resu l t s   der ived   In   tha t   sec t ion .  The example used fo r  

i l l u s t r a t i o n   i n  a l l  cases i s  a simple  one-dimcnsional model analogous t o  

the approach t o  a planet where the  only  available  observation is the 

vehicle-planet  direction.  In  Section 2.10, we report  some related work 

i n  connection  with the application of the  basic  minimum effort   theory 

t h a t  is not  specifically  required by the  contract. The re la ted  work con- 

sists of the  development of a l a rge   d ig i t a l  computer progrm which applies 

the  basic  minimum ef for t   theory   to   the   s tudy  of guidance  problems i n  typ ica l  
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interplanetary  trips. A brief  description  of  this program and the  computer 

results  giving  the  velocity  requirements for two typical  transfers ( ~ ~ r t h -  

Mars and Earth-Venue-Mars evingby) are given. 
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2.2 Mathematical  Statement of the  Problem  and  the  Separation  of  Estimation 
and  Control 

A. The  Statement of the  Problem 

We  shall  assume  that  we  have a precomputed  nominal  trajectory 

and  that  the  departures  of  the  velocities  and  positions  from  this  nominal 

trajectory  are  sufficiently  small so that a linearized  model  evaluated 

along this nominal path may be used to describe the dynamics of the 

vehicle.  The  measurement  information  will  be  idealized  as  continuous 

and it  also  suffices  to  represent  the  measurement  by  the  deviation of the 

actual  observations  from  its  nominal  value. 

Given: 

(1) The  linearized  equations of motion  describing  the  dynamjcs 

of the  vehicle  in  the  neighborhood  of  the  nominal  trajectory, 
Y 

(2) The  idealized  continuous  observations, 

where  x(t) = a state  n-vector (n 5 6) representing  the  difference 

between  the  actual  trajectory  and  the  nominal  trajectory. 

y(t) = an  observable  r-vector  representing  the  difference 

between  the  actual  observation  and  the  nominal 

observation. 

u(t) = control  m-vector (m 5 3). 

6(t) = a random  r-vector  accounting  for  the  additive 

measurement  error. 

?c Equations  given in this  chapter  are  numbered  as follows: Eq. (k, 5) means 
the J equation  in  Section 2.k. 
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The  elements of the  matrices F(t),  G(t) and M(t) are  essentially  the 

partial  derivatives  evaluated  along  the  nominal  trajectory.  The  random 

disturbances  are  assumed  to  be  normally  distributed  with  zero  mean  and 

covariances. 

cov ( c(t), ~(6)) = R(t)  6.(t-s) (2.3) 

where 6 ( a  ) is  the  dirac  delta  function.  The  elements  of  the  rxr  matrix 

R(t) are  functions  of  the  accuracies  and  the  rate of measurements.  We 

shall  assume R(t) is positive  definite. 

(3) The  initial  uncertainty X(O) IS a zero  mean,  normally  dis- 

tributed  random  vector  independent of c(t) with  covariance 

cov  (x(0)) = v(0) (2.4) 

(4) A pxn  matrix H(p < n), a nominal  arrival  time T and a 106s 

function 

where E ( . )  indicates  the  averaging  operator. 

Problem.  Find  the  control u(t) as a function  of  all  the  past  observations 

y( 8 )  0 < s 5 t which  minimizes (2.5) for  specified  values of cov(H~(T))~~; 

1 = 1,2 ...p . In  other  words,  the rms values of p of the n states  at  the 

nominal  arrival  time  are  to  be  independently  cmtrolled. 

Remark.  Equation (2.5) is not  the  same  as  the  total  average  velocity 

correction  which  is  given  by 

* 

* With  the  exception of Section 2.5, all  the  work  to  be  reported  is  concerned 
with  the  case  where p = 1. 
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A s l i g h t l y  modified c r i t e r ion  is used  here  because  the  expected amount 

of total   velocity  correction  given  by (2.6) can be  expressed  only in the  

form of   an  inf ini te  series when p > 1. mi6 modif ied c r i t e r ion  ( 2 . 5 ) ,  

which is the  integral  of  the  square  root  of  the  variance  of  the command 

accelerations, is, we  f ee l ,  a most reasonable  replacement  for  the  criterion 

(2.6). It has  the  properties  that  

(1) it reduces to   t he   exac t  amount of to ta l   ve loc i ty  

requirements  in  the  absences  of random disturbances, 

(2) it reduces  (except f o r  an  unimportant f ac to r  of E )  
t o   t h e  same criterion  given by (2.6) in  the  case when p=l, and 

(3)  it sets an  upper bound t o   t h e  expected to ta l   ve loc i ty  

correction, i.e., 

which can be easily ver i f ied  by application  of Schwarz's 

inequality. 

B. Separation of E::timation and Control 

What  we have ju s t   s t a t ed  is  a combined optimization problem i n  

estimation and control.  In  other words, we have, a t  time t, a l l  the 

measurements up t o   t h i s  time. The problem is  how t o  make use  of t h i s   s e t  

of' data t o  devise a traJectory  correction  schedule which  meets the  optimi- 

zat ion  cr i ter ion.  We s h a l l  assume t h a t   t h i s  combined problem in  estimation 

and control can be  t reated  separately  in   terns  of a problem in  optlmun 

estimation and a problem in  optimum control. 1.k s h a l l  first obtain  an 

estimate of thc   ac tua l  miss of  those components  whose terminal  accuracies 

are t o  be controlled and then  design  thc  controller depending only on these 

estimated miss components. This i s  an  asnumption since  the  control which 
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is allowed to be a  function of all the past  observations cannot, in 

general, be  replaced by one  which is a  function of only those  estimated 

miss-components. 



2.3 Optimum Estimation 

Since we have assumed tha t   t he   l i nea r  model i s  suff ic ient   to   descr ibe 

the  dynamics of the  vehicle  as well as the  measurement h i s to r i e s   i n   t he  

v i c in i ty  of  the nominal  path, the  technique  developed  for  the optimum 

linear  estimation  can  be used. The method i s  based on the  work of Kalman 

and Bucy6”  where the  estimates are updated a t  each  observation t h e  by 

using  the  best   predicted  estimate a t  t h i s  time and the new s e t  of da ta   jus t  

received. Only the   r e su l t s  w i l l  be  given  here. The derivations may be 

found i n  References 6 o r  7. 

Let $(t) be the optimum estimate of x(t)   defined by 

C(t) = E (x( t )  / y(s )  , 0 S 6 S t and the  past   controls)  (3.1) 

and l e t  V ( t )  be the  covariance  of  the  estimation  error 

V ( t )  = cov (x( t )  - 2(t> ) 

Then V ( t )  satisfies the  matrix  differential   (Riccatt i)   equation 

- =  F V + V F ’  - V M ’  R - ’ M V  at  (3.3) 

and the best estimate  x(t)  satisfies the  different ia l   equat ion 

= F ( t )  $(t) + G ( t )  u ( t )  + K ( t )  (y( t )  - &(t) ) a t  (3.4) 

where 

K ( t )  = V ( t )  M’ (t) R - I  (t) (3.5) 

Moreover, 

cov (C(t) ,   x( t )  - x ( t )  ) = 0 
f i  

(3.6) 

In i t i a l ly ,  x(0) = 0 and V ( 0 )  i s  given  by  the  apriori  information  concerning 

the  uncertainty  of  x(0). 

f i  

Note C(t)  is t h e  estimate of  the state a t  time t based on a l l  the  data  

up t o  time t. This can  be  used t o  compute the  estimate  of  the  actual miss 
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(i.  e., the p components  whose  final  values  are  to  be  controlled).  To do 

this,  we  introduce  the nxn transition  matrix 

which  satisfies  the  matrix  differential  equation 

A = - (T, t)  F(t) ; I (T, T) = I 
dm T t  

at (3.7) 

where I is the  identity  matrix.  Define 

X(T, t) = Z (T, t)  k(t) (3.9) 

and 

A x(T,  t) = E [x(T,  t) y ( s )  0 s t and  all  the  control t 3 
= (T,  t)  hX(t) (3 .9 )  

Physically,  C(T,  t) is the  predicted  miss  of  the  state  at  the  final t h e  

based  on  all  the  data  up  to  time t and  under  the  assumption  that  no  addi- 

tional  control is applied  over  the  interval  (t, T). It follows that  the 

components of H x(T,  t)  are  the  predicted  misses  whose  terminal rms values 

are  to  be  controlled. 

f i  

Our  assumption of the  separation of control  and  estimation  means 

that  the  control  acceleration,  which  executes  the  trajectory  correction, 

is only a function of H $(T, t). Using (3.4) and (3 .7) ,  it I s  seen  that 

H $(T, t)  satisfies  the  differential  equation 

x”(T’ t, = H (T, t)  G(t)  u(t) + H 5 (T, t)  q(t) (3.10) 
at 
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where 
0 
I(t) = M'(t) R - I  (t)  M(t) 

and  can  be  physically  interpreted  as  the  information  rate  matrix. 

In eurmnary, the  procedure  may be broken  down  as follows: 

(a)  Obtain  an  estimate of the  actual  miss  by  integrating  the 

differential  equation (3.10) where y(t)  is  the  deviation  of  the  actual 

observation  from  its  nominal  value. 

(b) Decide  the  size  of  the  trajectory  correction  required  at 

this  time. The dependence is only  going  to  be a function of H x(T, t). 

It is interesting  to  point  out  that  all  the  strategies  to  be  discussed  are 

not fu l l  corrections. A full correction  is  one  which  totally  nullifies  the 

estimated  predicted-miss. 

A 
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2.4 Linear  Control law 

One  way of solving  the  stochastic  optimal  control problem s t a t ed   i n  

the  previous  section is t o  d e f h e  some meaningful  average quant i t ies  and 

solving an equivalent  deterministic problem using  these  average  quantities 

as the  states. It turns  out  this  technique can  be f r u i t f u l l y  used if we 

confine  ourselves t o  l inear   control  laws, i.e., the  case where the  control  

depends only  l inearly on the  predicted miss H G ( T ,  t ) .  It w i l l  now be shown 

t h a t   t h i s  assumption on l inear   cont ro l  allows us t o  formulate  the  given 

stochastic  optimization problem as an  equivalent  deterministic  optimization 

problem using  the  elements of the  covariance  matrix of H $(T, t) as the 

states. 

Assume l inear   control  and w e  may, without lose of generality,  rcpre- 

sent  the  optimal  linear  control law by 

u ( t )  = -S(t)  H $(T, t) (4.1) 

where S(t)  is a mxp matrix whose elements are t o  be determined  such tha t  

(2.5) is minhized  for  specified  values of 

COv (H f(T))ii = COV (H x(T, T))ii , i = 1, 2... p 
fi  

Define 

p ( t )  = E [ H c(T, t )  G'(T, t) H' ] 
which i s  equivalent t o  cov (H $(T, t)) since x ( T ,  t) is  a zero mean process. 

Let W(t) be  the  covariance of the   e r ror   in   the   es t imate  miss x ( T ,  t ) .  Then 

h 

fi  

W(t) = cOV (x(T, t) - x(T,  t ) )  = 5 ( T ,  t) V ( t )  5 '  (T, t) (4.3) P 

Using (3.2), (3.10-3.12) and (4.1-4.3), it is  seen tha t  

dP 
a t  " -H 5 (T ,  t) C(t) S( t )  P(t) - P(t) S ' ( t )  C ' ( t )  % ' ( T I  t) X' 

+ H W 5' (t, T) f ( t )  5 (t, T) W HI (4.4) 
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- = -W 5' (t, T) ?(t) 5 (t, T) N dW 
at 

where tr( ) denotes  the  trace  operator. 

Now tha t   the  last tern of (4.6) is  independent of the  control, it follows 

that   specif icat ion of cov (H x(T))ii  is the same as specifying Pii(T) and 

the  determination of S ( t )  i s  equivalent  to  solving  the  following  deterministic 

optimization problem. 

- Given: The  dynamic system (4.4) with  P(0) = 0, f ind  S(t) which 

minimizes 

t r  p ( t )  s ' ( t)  S ( t )   d t  (4.3) 

for  specified  values of Pii(t) , i = 1,2,. . . , p. 

Inspection of (4.4) and (4.8) shows tha t   bo th   a re   l inear   in  S insofar 

as the magnitude i s  concerned.  This i s  a "degenerate" (or  singular) problem 

in  the  calculus  of  variations and special  techniques  are  usually  necessary 

f o r   t h e  method of solution.  In  general,  the optimum solution will consist  

of different  subarcs  connected a t  a f i n i t e  number of  points,  called  the 

corner  points, and the  problem i s  essent ia l ly  of finding  various  arcs,  the 

corner  points,  and  the  proper  arcs  to  follow between corner  points. 

The bas ic  minimum effort   theory n s  developed  by  Breakwell and S t r i ebe l  5 

i s  concerned with  the  case of p = 1. For  the  case p = 1 (i .e . ,   control l ing 

only one terminal miss), t h i s  problem can be  solved by application of  Green's 

Theorem! For  the  case p >1, Green's Theorem cannot  be  applied. It turns 

ou t   t ha t ,   f o r   t h i s   pa r t i cu la r  problem, the  solution  can  be  obtained by the  

use of the  maximum principle.  Clearly, the  case p = 1 can also  be  obtained 
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using maximum principle. 

We now give  the  solution of the  optimal  control law stated above. 

Since  the work in  this report  represents  various  extensions of the  basic 

minimum effor t   theory and since  the  solution by Green's Theorem does  pro- 

vide a d i f fe ren t  and i n   f a c t  more elegant way of solving  the problem f o r  

p = 1, we also include,  for  the  sake of completeness, i n   t h i s   r epor t  

(Section 2.6) a review of the method of solution as wae or iginal ly  derived 

by Breakwell and Striebel.  
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2.5 Optimal Control Law for  Controlling  Several  Terminal Components 
X M ~ X I ~ M ~  Principle 1 
This section  obtains  the  solution of the  optimal  feedback  gain matrix 

S(t)   by  direct   appl icat ion of the maximum principle.  The presentation is 

divided  into three parts. Section  2.5.1 gives the  necessary  conditions for 

the  optimal  l inear  control and the   character is t ic   of  the optimal  feedback 

coefficients.  It is shown that,   in  general ,   the optimum l inear   correct ive 

s t ra tegy  consis ts  of an in i t i a l   pe r iod  of no control  while  the  infomation 

catches up. This is  fol’l.awed by a period of  continuous  control and 

f i n a l l y  a period  of no control  and possibly  an impulse a t  the end. A 

computation  procedure is  outlined  for  obtaining  the  optimal  feedback  gains. 

Section 2.5.2 spec ia l izes   the   resu l t   to   the   case  of p = .1. It is  included 

here   for   the purpose of establishing  an  equivalence between the   resu l t s  

i n   t h i s   s e c t i o n  and that  obtained  originally  by Breakwell and St r iebe l  

using  Green’s Theorem. (A review  of t he   bas i c   min im  e f fo r t   t heo ry  (p - 1) 

using  Green’s Theorem is given in  Section  2.6.)  Finally,  in  Section  2.5.3 

we i l l u s t r a t e   t h e   r e s u l t s  by giving two examples. 

2.5.1  Equations for  Optimality and  Computation Procedure 

To put in evidence  the  “singular”  nature  of  the problem s t a t ed   i n  

the  previous  section, we define 
* 

#(t) = ; #(t) 2 0 

and le t   the   matr ix   of  feedback  gains  be  written as + 

S = $(t) B 

* 
For  convenience, we sha l l   hereaf te r  omit the  argument t. 

This substi tution  essentially  converts a control problem potent ia l ly   s ingular  
i n  mxp variables   into a problem  which is singular  in  only one variable. 

+ 
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wherc B i s  an  undctern~ined mxp matrix (undefined when $ = 0 )  such t h a t  

tr P B ' B =  1 

Substi tuting (5.2) i n to  (4.4) shows 

dP 
at - =  - $(t) (H 5 G B P + P B' G I  5' H') + Q (5.4) 

where 

Q = XI Z V  I V  Z '  HI 
n 

(5.5) 

i s  a known function of t ine .  The problem now r@duces t o   t h a t  of f inding B 

and $(t) 2 o , which  minimizes i,' $ d t   s u b j e c t   t o  (5.3) and specified 

values of Pii (T) .  

kt  the H%niltoi?ian  be  given by 

where the  elements of the pq symmetric rmtrix A are   the  adjoint   var iables .  

For a givcn  act) # 0 , ~~i .n imiz ing   th i s  Iirunil-tonian with  respcct t o  3 subject 

to   thc   cons t ra in t  (5.3), i s  a simple,  nondcconcrate prob1.cm in  calculus of 

variation. The nccessal-y equations for optimality are 

dP $(t) (Z A P + I' A Z) 
at  A = -  + Q  , 

and 

where 2 = H 5 G G I  Z '  11' and is a given  function of t ine.  
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Yke transversali ty  conditions are A (T) = o , i # J ; A i i ( ~ )  = ci , 
i = 1,2.. . , p, where c are t o  be adJusted such t h a t  Pii(T) meet the pres- 

cri’ocd values. 

ij 

i 

The Hamiltonian now becomes l i nea r   i n  #(t) and  can be v r i t t c n  as 

It only remains t o   n i n ~ i z e   t h i s  Hamiltonian  with  respect t o  #(t). Since 

$ ( t )  2 0, it f o l l o m  t h a t  = 0 i f  t r  (P A Z A)< I., is undetermined i f  

t r ( P  A z A) = 1, ana i s  i n f i n i t e   i f  t r ( ~  A z A)> 1.  he last case  cannot 

occur over any finite  Lnterval  since  otherwise #(t) d t  wi.11 diverge. 

Now t r (P  A Z A) = 0 a t  t = 0 and  can be shown t o  be continuous for any 

#(t) 2 0 including impulses ( i .e .  , #(t) are Dirac  delta  functions).  Hence, 

the casc tr (P A 2 A)> 1 cannot  occur and we are l e f t   w i t h   e i t h e r  # = 0 

(vhcn t r ( P  A ZA)  < I), or $d f 0 , i n  which casu tr (P A Z A )  = 1. 

I,’ 

It turns out that  th?  optimal  gain S consj.sts of (in  general,  but  not 

alvays)  thrcc poi-tiolls; an in i t i a l   pe r iod  of no control whcrc S = 0 ,  rollowed 

by a period of continuous conlrol, and fj.na1l.y a period ol” no control and 

possibly an  impulse a t  the end. Let us now consider  the two cases. 

(1) $(t) = 0 .  xquations ( 5 . G )  and (5.9) reduce t o  

- = o  d A 
d t  (5.7-1) 

and 
a? - at = Q ( 5 . 1 2 )  

which show that   the   adJoint   var iables  remain unchanged during  this  period. 

This  defines a surface which must contain  the  solution whenever $ f 0. Iic 
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now note   that   in   order   to   integrate   the set of equations  (5.8)  and (5.9) 

along this   surface,  it is necessary t o  express  $(t)   in terms of P and A . 
This  is done by  twice  differentiating (5.13). It is of in te res t   to   no te  

that   a long  this   surface  $( t )  is also given by 

which can be verified  by combining (5.9) and (5.13). It is a measure of 

the average  "acceleration"  and  vanishes  only when S = 0, or  equivalently, 

A = constant. 

Differentiating (5.13) once, using  (5.8),  (5.9),  and  the  comutative 

properties of the  trace  operations, w e  f ind 

Differentiating (5.15) once more yields  a re la t ion  between P, A , and 

# ( t )  which, after suitable  reduction,  can  be  written as 

We now have the necessary  conditions, namely (5 .8 ) ,  ( 5 . 9 ) ,  (5.13), (5.15) 

and (5.16), f o r  computing the  optimal  feedback  gains. It is noted tha t  the 

denominator i n  (5.16) is the  trace  of  the  product of two positive  semi-definite 

symmetric matrices and  hence is always 1 0. It will be assumed t o  be > 0 

i n  th i s  paper. In   other  words, the  matrix Q A Z A Z A is not  identically 

zero. 

Since P(0) = 0, it follows  that  (5.13)  cannot be sa t i s f i ed  a t  t = O .  

Hence, $(o) = 0 and there  w i l l  be an   in i t ia l   per iod  of no control. The time 

by  which the  control  is  first turned on depends on (1) the  information rate 

which is imbedded i n  Q, m d  (2) t h e   i n i t i a l  values of . Mathematically, 

the exact time of turning on is determined  by  simultaneously  satisfying 

(5.13) and (5.15). It should be noted that   sa t isfact ion  of  (5.15) determines 
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t he  time. The common multiplicative  constant of the  adJoint   var iables  is 

determined  by the  normalizing  equation  (5,U). 

Computation s t a r t s  by   mess ing   an   i n i t i a l  set of n(0) and integrat ing 

the  dynamic equation (5.12) forward u n t i l  (5.15) is satisfied.  This  determines 

ton . Use is  then made of (5.13) t o  campute the  normalizing  constant which 

determines  the  adjoint  variables a t  the  time of  turning on. We are now on the 

surface  such that $d # 0. To proceed  along t h i s  surface, w e  use  (5.16) t o   f i n d  

$d(t). This is  then  used i n  (5.8)  and  (5.9) to   integrate   the  equat ions  for  p 

and  forward. The optimal  feedback  gain  can  be  obtained  by  using $ and 

(5.7). Assume tha t   the   cont ro l  is turned  off a t  some time t, say t 

Then S ( t )  = 0 f o r  t > toff . The t o t a l  average velocity  correction  required 

is  given  by 

off  ' ton 0 

Ittoff on 

and 

N T )  = 

P(T) = 

(5.17) 

The computational  procedure we have  proposed gives a parametric  study of 

p(p + 1)/2 elements  consisting of t he   r a t io  of t he   i n i t i a l   ad jo in t   va r i ab le s  

and toff as functions of the  p(p + 1)/2 elements  of P(T). Let 

A ( t )  = P( t )  + H d (T, t )  V ( t )  $ '  (T, t )  H '  (5- 20) 

Then A ( t )  is  the  covariance of the  actual  terminal miss when the  control is  

turned  off a t  t. Hence, without loss of  generality, we  may consider  that  the 

parametric  study i s  between the  p(p + 1)/2 elements  consisting of t h e   r a t i o  

of the   i n i t i a l   ad jo in t   va r i ab le s  and toff and the  p(p + 1)/2 elements  of 
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A(toff). If the  diagonal  elements of A ( t  ) f o r  a l l  toff s(ton, T) do not 

meet the  specified  values,   the computation is  repeated  again  with  an improved 

estimate of A (0). 

off  

It should  be  noted  that  the  computation  procedure we have outlined 

asswnes t h a t   t h e  computed $( t )  > 0. In   the   event   tha t  $(t) becanes  negative 

f o r  some t €(ton , to,,), then  there  exists  periods  of no cont ro l   in   the   in te r -  

val (ton , toff). Physically,  this implies tha t  it is  not  possible t o  follow 

the  cri t ical   surface  defined  by (5.13). Assume tl is the first time t h a t  

@(t,) < 0; then the control  must be turned  off a t  some time t before t The 

problem here is t o  determine  the  exact  times of leaving  the  surface and inter-  

cepting  the  surface  again. This can be done by using  the  cri terion that the 

1' 

adjoint  variables must  remain constant  during  the time that the  control is  

off .  It is equivalent t o  the searching of a normalization  constant which 

must remain the same at the two points. A n  i t e r a t ive  scheme te ine ;   care  of 

t h i s  can be easily implemented on the d i g i t a l  computer. This is i l l u s t r a t ed  

i n  one of the numerical examples given i n  the next  section. 

So far w e  have  avoided the   poss ib i l i t i e s  of  impulsive  corrections, i.e., 

s o r   @ ( t )  me impulses.  Impulsive  corrections  give rise to   d i scon t inu i t i e s   i n  

P and A . Let de be the  incremental  effort. Then 

so t ha t   t he   e f fo r t  due t o   t h i s  impulsive  correction is  

Using the e f f o r t  as the  independent variable, (5.8) and (5.9) can be 

wri t ten as 
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and 

- = - (ZAP + PAZ) dP 
de (5 24) 

me re la t ion  between the  mount of the  impulsive  effort  and  the jump (or  drop) 

i n  A (or P) can therefore  be  obtained  by  directly  integrating (5.23)  and 

(5.24) wi th   respec t   to   the   e f for t .  Using  (5.23) and (5.24), w e  f ind 

d tr  (rmh) = 
de (5.25) 

which implies  that  impulsive  corrections  leave tr (PAZA) invariant .   In   fact ,  

(5.25) i s  t rue   fo r  sm;r i n i t i a l   va lues  of t r  (PAZA). This,  incidentally, is 

necessary  for  establishing  the  fact   that  t r  (PAZA) i s  continuous. We s h a l l  

now  show t h a t  impulsive  corrections  can be applied at t i f  and only if Q(t) 

is discontinuous a t  to. 
0 

Assume tha t   an  impulse i s  applied a t  to and Q ( t )  i s  contj.nuous at to. 

The t ine   der iva t ive  of tr (rAZA) i s  tr (PAh + WZh) which, immediately a f t e r  

the impulse of area E, is  given  by 

tr  ( P ~ A  + WA) 

to 
NOW, the  f i r s t  term i n  (5.26) 

Using  (5.23)  and  (5.24) to 
wri t ten as 

+ iE d tr   PA^ + Q G A ~  de (5.26) 
de 

0 

is  zero  since w e  were on the  singular  surface at 

we  see tha t   t he  second  term i n  (5.26)  can  be 

which is  greater   than 0 i n  view of our assumption t h a t  QAZAZA i s  not  identi- 

ca l ly  zero.  This  implies  that tr @'AZA)will be greater than 1 f o r  t > to , which 

i s  not  permissible. Hence, impulsive  corrections  cannot  be  applied a t  any time 

when Q(t) is continuous.  (This is the same as requiring  that  the  Eamiltonian 

be  continuous). On the  other  hand, assume Q ( t )  is discontinuous a t  to. Inspec- 

t i on  of (5.15) shows t h a t  it can be sat isf ied  only if P and A are discontinuous at t; 
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Hence, impulsive  corrections are allowed t o  occur when Q(t) is discontinuous 

o r  at t h e   f i n a l  time since  our argument does  not  apply  there. 

Remark 1. I n  most cases,  the  optimal  corrective stratew consists  of 

an   in i t ia l   per iod  of no control,  followed by a period  of  continuous  control, 

and f i n a l l y  a period of no control  and possibly  an impulse at the end. 

Corresponding t o   t h a t  (0), the  possibil i ty  of  periods  of no control  between 

ton 
by computing the  quantity (tr P(t ' )A(t)Z(t ' )A(t)  -1) for  a l l  t' > t, t "(ton , 
toff) .  If it d i f f e r s  from zero,  then it can be concluded that there  do  not 

exist  periods  of no control  between ton and toff. 

and toff when $( t )  > o f o r  a1l.t €(ton , ) can be established easily teff 

Remark 2. It is not  clear whether or  not t he re   ex i s t s   d i f f e ren t   i n i t i a l  

values of the   adjoint   var iable  which w i l l  give rise t o   t h e  same terminal  condi- 

tions. This i s  the  problem involving  uniqueness of our  solution and as such 

has  not  been  solved. 

Remark 3. It will be shown i n  Section 2.5.2 that i n  the case of con- 

t rol l ing  only one terminal component, the  solution we have  obtained is unique 

and tha t   there   ex is t  no periods of no control between t and toff if @ ( t )  is on 
positive  over t h i s  period. 
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2.5-2 Special Case of Controlling Only One Terminal Miss 

This sec t ion   spec ia l izes   the   resu l t s   to  the case where the rms values 

of only one of t he   s t a t e s  a t  the  terminal  time is specified. It is  included 

here t o   e s t a b l i s h  an  equivalence  between  the  solution by naximum principle 

(as we have  done)  and t h a t  by using  Green's Theorem (as was done  by Bredwell  

and Str iebel  5 (see  Section 2.6 also).  Without loss of generality, it w i l l  be 

assumed tha t   the   par t icu lar  te rmina l  miss we wish to   con t ro l  is the f i n a l  

uncertainty  in  the  position,  say  pll(T).  In  other words, H is a n-vector 

consisting of a l l  zero  elements  except  hll = 1. 

kt the  scalar  zll = H@GG'@'H' be  denoted by D where D i s  the  sensi- 2 

t i v i t y  of the miss dis tance  to  a change of velocity i n  the  direction of the 

correction. From (5.8) we see  that  p,,(t) s a t i s f i e s   t he   s ca l a r   d i f f e ren t i a l  

equation 

On the  other hand, Equations (5.13) and (5.15) become 

and 

All (2D Pll + qll D = 0 
2 2 

respectively. It follows from (5.30) t h a t  ton i s  determined by the  equation 

where 
* 

Also, f o r  a given  pll(T), toff is determined by 

* 
This i s  ca l l ed   t he   c r i t i ca l  p curve by Breakwell and S t r i ebeL5  
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Moreover, the  optimal  solution must follow t h e   c r i t i c a l  curve defined by 

(5.29) if 

This can  be  seen as follows. Assume (5.34) is  true.  It can  be easily ver i f ied 

that   th is   implies  

Suppose f o r  some t '  where t t ' C toff , we leave   the   c r i t i ca l  curve. on 
Then the  control  must be  turned off and f o r  t > t '  

which  by (5.35) i s  greater than  pll*(t). IIence, the  given  terminal pll(T) 

cannot  be  satisfied.  In  other words, we cannot come back t o   t h e   c r i t i c a l  

curve after leaving it. This  establishes our assertion. 

Suppose (5.34) i s  not   sat isf ied.  Then there   exis ts   an  interval  

within (ton , toff ) such that   the   control  must be  turned off. This  corresponds 

to the cE3e of an  unusual  increase  in  the  information  rate. kt ta and tj, be 

the  times of turning off and on, respectively.  Since  the  adjoint  variable 

must remain constant  during  the  time  that  the  control is of f ,  we see from 

(5.29) t h a t  

Moreover, 
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which is obvious  since all(t) is the  actual  terminal miss if' no control is 

appl ied  af ter  t. Quations (5.37) and (5.38) provide  sufficient  conditions 

for  determining  the times ton and teff. In other words, optimum transi t ion 

corresponds to double  points  in  the all - D Gl1 plane. It is of in te res t  

t o  note   that   in   the  case of the  control of  only  the  terminal  velocity,  the 

optimum solution,  according  to our theory, is an impulse at t h e   f i n a l  time. 

This solution is cer ta inly  correct   s ince  the  effor t   necessary  to   nul l i fy  the 

velocity  error remains  constant  in (0, T) and hence the  optimal  solution is 

the one i n  which all the  information is collected  before applying the  control. 
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2.5.3 Two Simple  Examples and the  Computer  Results 

A. Controlling  the  Position  and  the  Velocity of a One-Dimensional tilde1 
* 

- ~- 

Consider a space  ship  which  is  "homing"  with  constant  velocity vf on 

a massless  planet  interrupted  by  velocity  impulses  perpendicular  to the nomi- 

nal straight  line  approach to the  target or else  by a continuous  acceleration 

u in  this  perpendicular  direction. I& x1 and 5 be  the  transverse  position 
and  velocity  deviations  from the nominal  orbit.  The  equation of motion  (see 

Figure 5.1) is  therefore 

KNOWN POSITION TARGIST 

Figure 5.1 A Straight  Line  Model 

* mis same  straight  line  model  will  be  used  for  all  the  other  numerical  work 
ill this  report. 
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x1 = x 2 

x2 = u 
(5.39) 

The 2x2 t rans i t ion  mstrix f o r   t h i s  example becomes 

i (T, t) = [ 1 (5.40) 

The i n i t i a l  e r ror  is t o  be  only in   veloci ty   ( i .e . ,  vl1(0) = ~ ~ ( 0 )  = 0). It 

is assumed that  the  information  rate is  purely  positional and that  the  estimates 

of the  transverse  position  are  obtained by  angle  measurements a t  frequent  inter- 

vals A t  with  constant  accuracy oe. Hence, 

and the  information  rate  matrix becomes 

1 

0 
I (t) = 

(5.42) 

me  product v: (5: A t  may be r e l a t ed   t o  a dimensionless  information  rate 

parameter k def ined  for   this  example by 

This  parameter compares the incoming  information  with  the a priori  information 

(~~~(0))~' about   the  ini t ia l   veloci ty   error .  We shall assume that  the  variances 

of both  the  position x1 and the  velocity x are  Specified a t  T. 2 

Using (4.5) and the  infomation  rate  matrix &ven by (5.42), it is 

found t h a t  an analytical  expression may be  obtained  for  the  covariance 

matrix W ( t ) .  It can  be  easi ly   ver i f ied  that  
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1 
W 2 2 ( t )  = Wll (5.46) 

with  ini t ia l   condi t ion wl1(0) = P ~ ~ ~ ( 0 ) .  Solving (5.44), we find 

W 
-1 

11 

Moreover, 

z( t )  = 

2T log(-) T- t2  + - P - - T-tl T- t2 T - t l  * I  (5.47) 

For the  numerical  values, we l e t  (v (0)p = 100 m/sec, T = 10 sec, and k = 1. 

Realistic  values of k would be much higher and lead to   ear l ie r   reduct ion  of 

the  predicted miss. For example, if vf = 3 lun/sec and A t  = 1 hr,  then k = 1 

Fmpliea uo = 0.3 degree. 

6 
22 

Computation  Procedure and the Numerical Results 

It can  be shown that  the  adjoint  variables  are  monotonically  increasing 

functions of time If Xu > 0. (Xl1 and X22 are  always positive. ) Since 

X,(T) = 0, w e  must let  A E ( 0 )  C 0 so t h a t  is negative a t  the  time of 

turning on the  control. Moreover, the  control must be turned  off a t  the time 
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when A= reaches  zero  and  not  turned on again  unti l   possibly a t  the  terminal 

time. It was sham i n  the previous  section  that  an impulse may be applied 

at the f i n a l  time if (5.13) is satisfied. In our case, this   implies  

It should  be  noted that   an impulse at  T brings down P ~ ~ ( T )  and  cannot change 

the values of , Xll , and pll . Using  (5.23-5.24) we f ind  at time T 

and 

where de is the  incremental  effort due t o   t h e  impulse.  Using  (5.50-5.51)  and 

the   f ac t   t ha t  (5.49) must be sat isf ied  before  and after application of the 

impulse, we f ind  

e f fo r t  due t o   t h e  impulse = 
p22 

(5.52) 

where p2; and p + denote  the  values of E(x2 ( T ) )  immediately before and a f t e r  

the impulse, respectively. Hence, i f  p2g = 0 (corresponding to   per fec t   ve loc i ty  

control) ,   then  the  additional  effort   required i s  4-J. We s h a l l  assume t h a t  

the  desired p22 ( T )  = 0. 

2 
22 

The ac tua l  computation  proceeds as follows: 

1. kt h U ( 0 )  = -1 and  guess All(0) and h ( 0 ) .  

2.  Integrate (5.12) u n t i l  (5.15) is satisfied.  This  dctennines ton. 

3. Use (5.13) t o  determine  the  value of A at  t. 

4. Integrate  along  the  surface  by  using (5.8- 5.9) and (5.16) 

22 

u n t i l  = 0. 
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5. Turn off the   control   unt i l .  T. "his determines P(T) and is 

a possible  solution. But p,,(T), i n  general, w i l l  not bc 

zero. Note tha t  h(T)  remains the same as a t  the time t h a t  

the  control  was turned  off. 

6. If (5.49) is satisfied,   an impulse is applied at T t o   b r i n g  

pZ2(T) t o  zero. The additional  velocity  required is 4-1. 
7. If (5.49) is not   sat isf ied,  w e  repeat  the  procedure again 

with a d i f fe ren t  guess of Xl1(0) and A22(0). 

The results  arc  given  in  Figures 5.2-5.4 with  the  corresponding  curves 

ident i f ied by the symbol &W. Figure 5.2 gives  the  plot  of 4- (which 

is  the same as JT] since V(T) = 0) versus   the  total   effor t .  It i s  

seen t h a t  most of  the expended effort  appears  near  the  beeinning of t h e   t r i p  

and near  the end of t h e   t r i p  when very  high  terminal  accuracy is required. 

A typ ica l   p lo t  of the  his tory of versus  time t o  go is  given  in 

Figure 5.3 for  the  case where d q -  = 1530 km. Note the  period of no 

control  and  the  impulse a t  the end. The corresponding total   veloci ty   required 

as a function of the  t ime  to  go is shown i n  Figure 5.4. "he jump at  T i s  due 

t o   t h e  impulsive  correction. 

In  order  to  get  a "feeling"  for  these numbers, we include,  in  thc same 

graph, some typical  values  obtained from othcr  solutions. The  two soluti.ons 

w e  have  used are the  Quadratic Loss ( to  be denoted  by QL) and the Minimum 

Effor t   for   control l ing only t he   f i na l   pos i t i on   ( t o  be  denoted  by MEl) . 
€&: This is  the problem of minimizing 

f o r  a specified P(T). The solution of t h l s  problem is well known? Let the 

solution be denoted by *. Then 
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? = - ( Z A * p  + P*A*Z) + Q  

With the  exception of #(t), w e  see t h a t   t h i s  set of equations is  the same as 

that  given  by (5.7-5.9). However, here  the problem is not  singular. The 

solution can  be  obtained  easily by Integrating  the  adjoint  equations backwards 

with  an  estimated  value of A*(T). The off  diagonal  elements  of .A*(T) and zero 

and the  diagonal  elements  of A*(T) a r e   t o  be  adjusted so that   the  prescribed 

values of Pii(T) are sa t i s f ied .  To obtain  the  solution  corresponding to the  

case  that  p * (T) = 0, we  l e t  A22 (T) = OD . The resu l t s   a re   a l so   p lo t ted   in  

Figures 5.2-5.4. The numerical  values  indicate  that  the  difference btitween 

th is   so lu t ion  and the  optimal  solution  developed  in  this  paper  in  the  total  

velocity  requirement is  about  ten  percent. 

* 
22 

- MFJ: This is  the problem of minimizing the   e f fo r t  when only pll(T) is speci- 

fied. It corresponds t o   t h e   c a s e  of l e t t i n g  h Q ( 0 )  = h22(0) = 0. In  other 

words, we cont ro l   the   pos i t ion   to   the   spec i f ied  rms value and turn  off   the  

con t ro l   un t i l  T. An impulse is then added to   b r ing  P ~ ~ ( T )  down t o  zero.  In 

Figure 5.2 we plot t he   r e su l t s  of versus   the  total   effor t   wi th  

or   wi thout   the   f ina l  impulse. The  amount of the  additional  velocity  correc- 

t i on  due t o   t h e  impulse is, of  course, d-1 . Similar  plots are given 

in  Figures 5.3 and 5.4. As expected, fo r   t he  same terminal rms values,  this 

design requires a l i t t l e  more effort   than  that   obtained by controll ing both 

components s t a r t i n g  at t = 0. 

B. Controlling  the Two Positions of Two One-Dimensional Mode1.s 

This example considers  the  terminal  phase  of an in te rp lane tary   t r ip  

where both  the  in-plane  and  out-of-plane  terminal  position components are t o  

be independently  controlled. The perturbed  motions are assumed t o  be decoupled 
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and t h a t  each one moves i n  a uniform  motion. We shal l   use   the sane infomation 

rate matrix as t h a t  used in  the  previous example and it w i l l  be fur ther  assumed 

that  the  information rate with  respect t o   t h e  two posit ions are independent. 

me differential  equations  governing  the  adjoint  variables are: 

(5.53) 

and 

0 

. tions (5.53-5.54) do not imply that  the  equations are decouple' d. The 

coupling i s  introduced  by  the  function $(t). Ry l e t t i ng  XZ2(O) = 1, a family 

of solutions can  be  obtained  for  different  values of Xl1(0). A typ ica l  one 

corresponding t o  Xll(0) = 1.01 is  given i n  Figure 5.5. It shows the  plot   of 

the  his tory of 4- , ,/w and the  effort   versus  the  t ime  to go. 

It i s  seen that   the   solut ion  consis ts  of  an in i t i a l   pe r iod  of no control, 

followed by a period of continuous  control and f i n a l l y  a period of no control 

a t  the end. The last statement i s  true since  the  control may be turned off 

when sufficient  terminal  accuracies have  been  obtained. 

Case Involving a Gap i n  Information nate 

We know that   in   the  event  $(t) < 0, there w i l l  exis t   in tervals   within 

(ton , toff) such tha t   the   cont ro l  is  turned  off.  This  occurs,  for  instance, 

when the  information rate suddenly  increases. A computation  procedure was 

described  in  the  previous  section by  which the  intervals  of no control  can 

be  found.  For  purposes  of i l lus t ra t ion ,  w e  assume that  the  information 

vanishes  over  the  interval (tl , t2) and  suddenly  increases a t  t2. In  particu- 

lar, we choose tl = O.27T and t2 = 0.45T. 
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Now the  elements of Q(q,, and %2) are equal and  have the  general 

shape 

It is clear   that   the   control   cannot  follow the  sharp rise of  qii a t  t2: i .e . ,  

@(t,) C 0. Therefore,  the  control must  be turned  off  before  or  immediately 

a f t e r  tl. Since Q is discontinuous a t  tl , it follows from the  reasoning  given 

i n  the  previous  section  that  an impulse may be applied a t  tl. This i s  indeed 

the  case. The amount of the impulse (which is not a full correction) is deter-  

mined by  the  condition that the  adjoint   var iables  after the  correction must 

be the same as the time when the  control  is turned on again. The  amount of 
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the  drop  or jump i n  P or A can  be  determined  by  integrating  with  respect 

t o   t h e   e f f o r t  at tl using (5.23-5.24) which i n  our case  can  be  written as 

- 2 
de = (T-tl) hi: ; i = 1, 2 (5.57) 

Let the  superscripts - and + denote  the times immedtately  before and a f t e r  

the impulse, respectively.  Direct  integration  of (5.57) yields  

e f f o r t  Cue t o   t h e  impulse = 1 

(T-t1l2 

Dividing (5.56- 5.57) shows 

which  can be integrated  to   give 

muation  (5.59) shows, as expected, t ha t  (5.13) is sat isf ied  during  the 

Impulse. 

P r io r   t o  tl, the computation  remains the same as before. A t  tl, w e  

proceed as follows: Let d = A11 

G -  
1. Assume an e f f o r t  due t o   t h e  impulse and  compute Xl: , A 2 i  , 

and d from (5.58). 

2. Use (5.59) t o  determine p-,; and p + . 
3. Integrate  the  equations for  pii w i t h  S = 0 u n t i l  (5.15) is  

22 

satisfied.  This  determines ti. Use i s  then made of (5.13) 

t o  determine Ail and d at tl  . I 

L 
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4. If d(tf)  # d(t;), we repeat  the  procedure  again by assuming 

a d i f fe ren t   e f for t .  

The r e s u l t s   f o r   t h e  case hll(0) = 1.01 are sham  in  Figure 5.6. The 

discont inui t ies  at tl correspond t o   t h e  impulsive  correction. It is  seen 

that ti is  greater than t2 which agrees with  the  intuit ive  reasoning  that  

it is necessary t o   l e t   t h e  information  catch up after an in te rva l  of no obser- 

vation. 

It is of interest   to   note   that   the   quadrat ic  loss solution  corres- 

ponding t o   t h i s   p a r t i c u l a r  example is completely  decoupled. In other words, 

specification of the  variance of the  terminal  in-plane  position  does  not 

effect   the  solution  of  the  out-of-plane component and vice  versa. The 

coupling, i n  our case, is introduced by the loss function. 

2 -36 



lo4 

5 

2 

lo3 

5 

2 

QL 
ME 1 
ME 2 

- VELOCITY \ 

ERROR = 100 M/SEC ', 
ANGULAR  INFORMATION \ 

\ 
*\ 

'. 
RATE  PARAMETER k = 1 '. -\ 
T = lo6 SEC \ 

10 2 1  
145 155 165  175 185 195 205 215 

TOTAL  EFFORT (METERISEC) 
FIG. 5.2 RMS TERMINAL  POSITION  ERROR VS. 

TOTAL  EFFORT 
POSITION AND VELOCITY CONTROL 

L 

2 -37 



5 

n 

0 

v, 
\ 

w 2  

2 
Y 

LT 

oz w 
10' 

5 

2 

loo 

A - Q L  
0-ME 1 
0 - M E  2 

\ \  p" 

"W \ 
RMS  TERMINAL  POSITION 
ERROR = 1530 KM 
RMS INITIAL VELOCITY 
ERROR = 100 MISEC 
ANGULAR  INFORMATION  RATE 
PARAMETER k =  1 

T = lo6 SEC 

I I I I I I -  
0.85 0.7 0.55 0.4 0.25 0.1 I 

NORMALIZED  TIME  TO GO 
FIG. 5.3 HISTORY OF REMAINING VELOCITY 

ERROR  VS.YIME TO GO 
POSITION  AND VELOCITY CONTROL 

2-38 



RMS  TERMINAL POSITION ERROR = 1530 KM 
RMS IN I T l A L  VELOCITY  ERROR = 100 M/SEC 
ANGULAR  INFORMATION  RATE  PARAMETER k = l  
T =  lo6 SEC 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 
NORMALIZED  TIME  TO GO 

FIG. 5.4 CUMULATIVE EFFORT VS. NORMALIZED  TIME TO GO 
POSITION  AND  VELOCITY CONTROL 



l o 5 C  

z c  * 2  a 

c 
c n 5  
2 cr 

2 

r )  

- RMS INITIAL VELOCITY 
ERRORS = 100 M/SEC 
ANGULAR INFORMATION RATE 
PARAMETER k= 1 
T= lo6 SEC 

- 

I 

l ° C C -  0 
NORMALIZED TIME TO GO 

FIG. 5.5 HISTORY OF  REMAINING  POSITION  ERRORS 
AND  CUMULATIVE  EFFORT VS. TIME TO GO 

TWO POSITION  CONTROL 

2 -40 



105 

5 [ x,, (O)=l.Ola x22 (0)=1] 

n 

z 
* 2  INFORMATION GAP 

I 
U 

v) 
E g 104 

0 = 5  
E 

a 
W 

cn 
0 

1 

z 

a. 
a 

a 
W 
I- 
m 5  

RMS INITIAL VELOCITY 
z ERRORS = 100 M/SEC 
a ANGULAR INFORMATION RATE 

PARAMETER k = l  

2 

f 103 

2 

lo2 0.85 0.7 0.55 0.4 0.25 01 
NORMALIZED TIME TO  GO 

FIG. 5.6 HISTORY  OF  REMAINING  POSITION  ERRORS 
AND CUMULATIVE  EFFORT  VS.TIME TO GO 

TWO POSITION  CONTROL 

2 -41 



2.6 Solution by Green’s Theorem  (Review) 

This   sect ion  out l ines   an  a l ternate  method (the one used by Breakwell 

and Striebel)   for  solving  the  optimization problem of controll ing  only one 

terminal component. Without loss of generality, it w i l l  again  be assumed 

that   the   par t icular   terminal  miss we wish t o   c o n t r o l  is the  uncertainty  in 

the  posit ion xl. The  method is based on an ingenious  application of Green’s 

Theorem.. 

* 

From EQ. (4.4), we f ind  

where H is  a row vector  consisting  of  all.  zero  elements  except  hl = 1. Let 

the  quantity  to  be minimized be  given by 

The problem i s  t o   f i n d  the elements  of the mxl feedback  gain  matrix S ( t )  

which  minimizes  (6.2) subject   to   the  different ia l   constraint   (6 .1)  and a pres- 

cribed  pll(T). 

Now, f o r  a prescribed  instantaneous p,,(t) and S ’ ( t )   S ( t )  , the  negative 

term i n  (6.1) i s  most negative if we choose the m-vector S ( t )   p a r a l l e l   t o   t h e  

m-vector HQG. In  other words, we apply  the  control  in  the  direction of  maxi- 

m effectiveness.  Let 

* 
The work in  Sections 2.7-2.9 a re  a l l  concerned  with  the problem of controll ing 
only one terminal component. 
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where 

D ( t )  = d m  
is the m a x i m  velocity  effectiveness and g ( t )  2 0” is a sca la r   ga in   to  

be  determined. Substi tuting ( 6 . 3 )  Into  (6.1)-(6.2), we f ind  

while   the  integrated  total   effor t  becomes 

J O  

The problem now becomes t h a t  of finding a scalar   gain  g( t )  2 0 which mini -  

mizes (6.6)  subject to   the  different ia l   constraint   (6 .5)   with  specif ied pll(T). 

The problem stated  in  the  previous  paragraph i s  equivalent, by elimi- 

nation of g ( t )  between  (6.5) and (6.6), t o  the  minimization of the  following 

time in tegra l   in   the   t -p   p lane  

n , p  d t  - dPll 

2D(t) f i  e(c)  = 

(0,o) 

where a t  each  point of the curve C joining (0,O) t o  (T, pll(T)) 

Now the  difference  in  cost   e(cl)  and e(c2)  associated  with two d i f fe ren t  

strategies  g,(t)  and %(t) leading to   t he   spec i f i ed  pll(T)  can  be  expressed 

as a l i n e  in tegra l  around a closed  curve  in t h e  t-pll  plane which, according 

~ * 
We assume all(T) < all(0) so t h a t  a negative  g(t) w i l l  not  be  helpful. 

~~ 

2 -43 



t o  Green’s Theorem, is 

where 6 denotes  the  l ine  integral  around the  closed  curve  obtained 
cl.2 

by following O1 forward from (0,O) t o  (T, pll(T)) and then C2 back t o  (0.0). 

The area is counted as posi t ive if enclosed  in a counter-clockwise  direc- 

tion.  Evaluating  the  integral  in  the  double  integral  in (6.9), w e  obtain 

(6.10) 

Assuming that,  typically,  D(t) i s  a decreasing  f’unction  of t, the   in tegra l  

i n  (6.10) is positive  or  negative as the  point  in  question lies below or  

above a c r i t i c a l  curve C* given  by 

which separates (0,O) from (T, p (T)), s ince D(T) = 0 and ql1(0) D(0) > 0. 

Thus, a possible  curve from (0,O) t o  (T, pll(T)) must c ros s   t he   c r i t i ca l  curve 

C an odd number of times. Figure 6.1 i l l u s t r a t e s   t he   s i t ua t ion  when t h i s  

number is  3. 

11 

* 

2 -44 



Figure 6.1 Possible  p  Histories 11 

Let the  crossing  points be A1, %, . . . . . . . . . Furthermore, l e t  A be 
* 

a point on C obtained by proceeding from (0.0) along a curve C1* with a maxi- 

mum slope qll(t) permitted  by (6.8) until t h e   c r i t i c a l  curve i s  reached  and 

le t  B be obtained s h i l a r l y  by  proceeding backwards from (T, pll(T)) along a 

curve C2 w i t h  slope  qll(t) until C is reached. Then (6. lo), together  with 

the plus sign of the   in tegra l  below C shows that  the  contribution to C from 

* * 
it 
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t ha t   pa r t  of t he  curve C between (0,O) and A is greater  than  that  obtained 

by  following Cl from (0,O) t o  A and then C* from A t o  A1. Likewise, the 

contribution of the   a rc  %A of C is  greater than  that  of the  corresponding 

arc  of C . Similarly,  because of the minus sign of the   in tegra l  of (6.10) 

above C , the   contr ibut ion  to  C of the  arc  $A of C is  greater than that of 

the  corresponding  arc of C , and the  contr ibut ion  to  e of the  arc  of C between 

A and (T, pll(T)) i s  greater  than  that  obtained by following C from 

and  then C2 from B to ( T ,  pll(T)). 

* 

3 * 
* 

3 * 

3 * % t o B  * 

Putting a l l  this  together,  we  have  proved tha t   t he  optimum curve C i s  

made up of C1 , C* , C2* , so t h a t   t h e  optimum g ( t )  is 0 un t i l   t he  time t, 

at which C1 meets C and is  again 0 a f t e r   t he  time t a t  which C meets C2 . 
Between tl and t2 , the  optimum g ( t )  i s  such as t o   y i e l d  (6.1.1). 

* 
* 8 * * 

2 

In summary, then,  the  optimal  stratem,  in  general,  consists of a period 

of no control  while pl1(t) r i s e  from 0 t o   t h e   c r i t i c a l  curve.  This i s  followed 

by a period of continuous  (non-impulsive)  control as long as q (t) is  contin- 11 
uous, and provided t h a t  pll (t) does  not  exceed q (t), and f i n a l l y  f o l . l ~ ~ e d  by 

a period of no control  just   before  arriving  near  the  planet.  

* 
1.1 

As  we have  mentioned already,  the above solution is  not  applicable i f  
* 

t h e   c r i t i c a l  curve C has anywhere a positive  slope  greater  than  the maxirnum 

allowable  qll(t). Such i s  the  case,  for example, when a sharp  increase  in 

information rate i s  encountered. Suppose, f o r  example, that   there  i s  a sharp 

rise i n  the  information rate a t  s m e  time tc. This implies  that  pll*(t)  also 

has a sharp rise a t  tc. In  this  case,   the optimum allowable C must leave C 

a t  some t ime  pr ior   to  tc, proceed at the maximum allowable  slope  qll(t), and 

rejoin C a t  some time later than tc , In  such a way as t o  minimize the sum of 

the  double  integrals  evaluated Over the  two shaded areas Indicated i n  Figure 6.2, 

* 

* 
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tC  L2 
'1 

Figure 6.2 Optimum pll History  with Jump i n  Information  Rate 

This   s i tuat ion  a lso  ar ises  i f  there  is  a f in i t e   i n t e rva l   o f   t i ne ,  say 

t t o  t , over which the  information rate vanishes.  In this case pl1*(t) 
8 E 



111 I...,. .,, . _.."_."". .... 

vanishes between t.B and t,C 80 that  the c u m  C drops down to  the  t-axis 

between \ and t and rises sharply  again a t  tC. Again an allowable C 

cannot follow the  sharp rise. The  optimum C must, therefore, follow the  sharp 

drop a t  tB only par t  of the way  down t o  pll = 0, proceed a t  slope qll(t), 

which is 0 between tB and tC , and rejoin C a t  some time l a t e r  than t i n  c '  
such a way as t o  minimize the sum of the  contributions of the two shaded areas 

i n  Figure 6 .3  The drop part  way toward pll = 0 at 5 corresponds, of course, 

t o  an impulsive correction  lees  than  the full correction  indicated by the 

* 

C 

* 

estimated mise ju s t   p r io r   t o  tB. 

A 

*11 

I I 

I 
I 
1 

I I .  

I I 
I 

1 
r 

T 

I 

tl t2 
? 

Figure 6 .3  Opt- p11 History with Break i n  Information Rate 
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I 

The  search for the  optimum  transitions  in Figures 6.2 and 6.3 is not 

tedious.  It was shown  in the previous  section  (Section 5.2) that  optimum 

transitions  correspond to double  pointe  in the  all - D plane  where, 

to recapitulate, 

all(t) = Pll(t) + R ili V 4 '  E' (6.12) 

which ie the mean quare value of the  actual  tenninal mise when  the  control 

I s  turned off at  t, 

It should  be  noted  that p,,(t) and all(t)  are  mean-squared  quantities 

whose  optimum  histories  correspond to an optimal  choice of g(t). A typical 

history of the  random  process I xl(T, t) I is not  necessarily  monotonic 

prior to control  turn-on and the value  at turn-on is not  necessarily  at  some 

pre-assigned  critical  level.  Neither is its final value  specified. 

/.- 
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2.7 Simultaneous  Optimization of Control, Measurement Rate  and the m e  
of Measurements 

The average to ta l   ve loc i ty   cor rec t ion  computed in  the  previous  sections 

depends partly on launching  accuracy  and pa r t ly  on the  information rate 

history.  The latter is especially  true  near arrival a t  a planet. Now, 

whether  onboard  measurements of the  planet  against  a star background are  

made photographically  by  astronauts  or  by powered star and planet  trackers,  

there  are good reasons  for  reducing  the  total  number  of measurements t o  a 

number very much smaller than  the number possible  by  measuring  throughout 

at a m a x i m  rate even  though the  average  total   velocity  correction would 

thereby  be somewhat increased. We are led, thus, t o  formulate  the  following 

problem:  Optimize the  variable  observation rate as well as the  correction 

schedule so as t o  achieve a desired  terminal  accuracy  with a minimum value  of 

a specified  l inear combination  of t o t a l  number  of observations and average t o t a l  

velocity  correction. Again, we w i l l  be  only  concerned  with  the  case of p = 1 

and controll ing  the  terminal  posit ion xl. 

The r e su l t s  of t h i s  investigation o f  simultaneous  optimization of con- 

trol. and measurement rate seem to  indicate  that ,   in  general ,   the  optimal 

policy  consist5 of perfods of measuring separated by periods  without measure- 

ment or  corrective  action. Each measurement period starts a t  a m a x i m u m  r a t e  

with a sub-pericd  without  correction  action.  This i s  followed by a sub-pericd 

of gradual  (continuous)  correction, and ends with a n  impulsive par t ia l   correc-  

t ion  of the miss. The measuring p r i o r   t o   t h e  impulse may be e i ther  a t  m a x i -  

mum r a t e   o r  a t  a lower c r i t i c a l   r a t e .  If, in   addi t ion,  a choice is  available 

a t  any  time between various measurements, the  optimization  procedure  automati- 

ca l ly   se lec ts  a most advantageous measurement. 

For mathematical  simplicity, we shall  confine  our  attention  in  Sections 

2.7.1-2.7.4 t o  an  essent ia l ly  one-dimensional control  problem the same as 

the  example considered in  Section 2.5. Section 2.7.5 shows hm  the   so lu t ion  
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can  be  extended  to  the  two-dimensional  case  including,  in  addition, a choice 

between  several  kinds  of  observations. 

2.7.1 Formulation  of  the  One-Dimensional  Model 

Consider  the  one-dimensional  problem  analogous  to  the  approach  to a 

planet  where  the  only  available  observation  is  the  vehicle-planet  direction 

(described  in  Section 2.5.3). The  velocity  effectiveness  of  this  straiC;ht 

line  model  is simply the  time  to go; i.e.,  D(t) = T-t,  which  will  be  denoted 

by 7 . 
Let  r(t) be  the  variable  measurement  rate, 0 C r(t) S R ; R being  the 

maximum observation  rate.  The  spectrum of the  additive  measurement  noise 

can  be  written  as 

2 
(5 

"$q 
Let  pll(t)  and  wll(t)  be  the  variances  of  the  predicted  miss-distance 

8,(T,t)  and  its  error  xl(T,t) - xl(T,t), respxtively,  and  let all(t)  be 

the  variance of the  actual  miss.  Then 

fi  

a 11 (t) = PJt) + w 11 (t) 

since  the  error  in  xl(T,t)  is  known  to  be  independent  of  xl(T,t).  It  can A A 

be readily sham, using  the  results  of  the 

and 

where h(t)  is a measure of the  geometrical 

(7.4) 

effectiveness of the  measurements 

and  increases  markedly as t - T in our case of angular  measurements of the 
target's  instantaneous  direction 
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h ( t )  = t2 
V 

2 2  2 
f =I, 

Note Pl1(o) = 0, while all(0) = wl1(0) = 8 COY (x,(O)). Now t h e   t o t a l  number 

of observations may be  represented by 

i' r(t) d t  

while  the  average  total   velocity  correction is 

I, g(t) 

kt the  cost  be  given  by 

cost  = [ 2 g ( t )  J 5 - p  at  r(t) d t  (7.8) 

where  k is a specified  constant. "he probl.em t o  be  solved  in  this  section 

can  be s t a t ed  as follows. Determine the  control   var iables  r(t) and g(t)& ~~ 

subjec t   to   the   inequal i t ies  

0 5 r(t) 5 R (the m a x b  observation rate) (7.9) 

0 5: g( t )  s 03 (7 3.0) 

which minimize the  cost  (7.8) f o r  a given sum a (T) of  the  f inal   values 

of the "states" pll and wll where known in i t i a l   va lues  are 0 and 3 cov ( x a  

and  which sa t i s fy   the   d i f fe ren t ia l   cons t ra in ts  (7.2) and (7.4) where h ( t )  

is a known function. We assume t h a t  all(T) C all(0) 80 t ha t  a negative  g(t) 

would not  be  helpful. 

11 

Note t h a t   t h i s  is  8 doubly singular problem i n   t h a t  both  control 

variables occur only l inearly  in  the  appropriate Hamiltonian. A computation 

2 -52 



procedure for   so lv ing   th i s  problem i s  given in   the  next  two sections. 

2.7.2  Necessary  Conditions fo r  Optirnality 

To investigate  the computation of the  solution, we first derive  the 

necessary  conditions  under which the  optimal  solution must satisfy.   Let 

hll(t)  and cy (t) be the  adjoint  variables  corresponding  to  pll( t)  and wl l ( t ) ,  

respectively. The Hamiltonian t o  be minimized is thus 
11 

H = All (r h wll - 2 T e pll) - all r h wll + 2 g1JB;i +.k r 
2  2 

!?he terminal  constraint  on pll + wll requires   that  All and cyll sa t i s fy   the  

end constraint  

Note t h a t   i n   t h i s  doubly singular problem 2 and - bH are  independent at5 a r  
of g and r. The minimization of t h i s  Hamiltonian  with  respect to   the   cont ro ls  

g and r is  simple  provided t h a t  > 0 and f 0. It turns   out   that  

is never  negative (i.e., 7 A l l f i l  s 1 as proven i n  Section 2.5.1). The 

procedure when e i t h e r  a or  2 vanishes is  less di rec t .  "he state and con- 

t r o l   h i s t o r y  throughout  an  interval of time  during which e i the r  one vanishes 

is  cal led a "singwlar arc, I' or   in   case  they both vanish, a "doubly singular  arc" 

(3-S-arc). Thus, t h e  minimization of H with r e spec t   t o  g shows that 

aH 
@; w 

hH 
e; ar 



during any control  period  (g(t)  > 0) and it can  be shown t h a t  an impulsivc 

correction  preserves  the  product llfil , the  instantaneous  drop i n  pll 

being matched  by a r i s e  i n  A Differentiation of (7.15) with  respect t o  t, 

together  with (7.2), (7.12) and (7.15) yields  the  equation for  t h e   c r i t i c a l  

p described  in  the  previous  section, namely 

11’ 

-x 

p ( t )  = p*(t) = 3 r h wl: T 

The minimization of H with  respect   to  r shows t ha t  

R i f  F C O  

r =  

0 i f  F 7 0  

where the  “switching  function” F is  given  by 

To proceed  along  an  axc on which P = 0, ;IC need an  equation  for computing 

in  tenns of r, the   ad jo in t   vwiab1 .e~  and the  states.   This is obtained as 

follows. Prom (7.4), (7.12) and (7.14), we f ind  

- [ (CYl1 - All) wl; ] = -  Q w a 2 
a t  

$51 
11 

which  shows t h a t  

(7.19) 

Thus, any interval  during which F remains zero const i tutes  a D-S arc. 

On Yne other hand, subst i tut ing (7.16) into  (7.2)  gives 

which provides  an  expression  for  g(t)  in  terms of w 11 , r and G. Eliminating 

g ( t ) ,  we f ind  
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r 

Since  dF/dt niust be  identically  zero  along  the D-S arc, w e  find, 

the  right-hand side of  (7.22) t o  zero, a r e l a t i o n   f o r  i- i n   t e r n s  

a f t e r   s e t t i n g  

of r, the 

s t a t e s  p and w and the  adjoint   var iables  (Y 11 and All. This  allows  us t o  

compute the  intermediate  r-history. 
11' 

We observe tha t  an impulsive  drop i n  pll, and consequent1.y an  impulsive 

r i s e   i n  X and F, can  only  occur a t  the end of a period of  Observation, i .e. ,  

at time when F = 0 preceded by times when F S 0. This is  equivalent  to  allow- 

ing  only those discontinuities i n  p and All whrkh preserve  the  continuity 

not  only of A l l G  but also of the Hamiltonian. In   par t icu lar ,  we cannot 

jump onto a D-S arc where P has t o  remain zero. 

11 

11 

Furthermore, the  control  gain  g(t)  i s  always zero a t  the  beginning of 

any observation  period. I n  par t icu lar ,  wo cannot start on a D-S arc a t  the 

beginning of an  observation  period  since  the  simultaneous  vanishing t o  (7.18) 

and (7.20) is  consistent  with a n  increasing  h(t) .  

There remains the   poss ib i l i ty   o f   s ta r t in2  on a D-S a rc  a t  a time tl 

when F(t,) = 0 preceded by times when F s 0. If however, ? ( t i )  > 0, s t a r t i ng  

at tl on a D-S arc would require a negative jump in   $ ( t ) .  But according to 

(7.22), F ( t )  is  a decreasing  function of 2 so t h a t  a negative jump i n  k requires 

a posit ive jump i n  i- from the  value i-(t-) = 0 (since F < 0 r = R).  But t h i s  

posit ive jump i n  i s  not  consistent  with r s R. Finally,  then, w e  conclude 

tha t  w e  can  onl;r start on a D-S a rc  at time tl such t h a t   F ( t i )  = 0 and 

$(ti) = 0, preceded  by  times F <-0. 

1 

The next  section  outlines a computation  procedure for  obtaining  the 
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optimal r and g h is tor ies .  It t u r n s  out  that   the  optimal  policy,   in generall 

consis ts  of periods of measuring  separated bx periods without measurement 

or   correct ive  act ion.  Each  measurement period starts at maximum ra t e  r(t) - R, 
with a subperiod  without  corrective  action  g(t) = 0. This is  followed by a 

subperiod  of  gradual  (continuous)  correction and  ends with  an  impulsive par- 

t ia l  correction of the  miss. The measuring p r i o r   t o   t h e  impulse may be e i the r  

at maximum rate or a t  a lower rate. "he latter case  consti tutes a "doubly 

sinpplar" segment of the   con t ro l   h i s toq .  

2.7.3 Computation Procedure 

From the  equations  derived  in  Section 2.7.2, we see  that  (1) if r = 0 

then g = 0, while all , All , pll and wll remain constant;  (2) F(0) > 0. It 

fo l lws  t h a t  r = 0 i n i t i a l l y .  The computation  proceeds as follows: 

1. Guess an   in i t ia l   pos i t ive   va lue   for  (al1 - All). 

2. Keep r = 0 and w constant   unt i l  tl when F(tl) = 0; tl i s  specified 11 

by  the  equation 

3. Keep r = R, g ( t )  = 0 and compute wll(t) and pll(t) = all(0) - wll(t) 

u n t i l  time t when pll(t)   reaches  the  cri t ical   curve pll (t,) = $ T~ Rh(t2)w11 (t2). 

Computation of w l l ( t )  is done here  analytically by using  the  explicit   solution 

(see EQ. 5.47) 

* 2 
2 
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4. Compute Xll(t2), 

lll(t2) = 
1 

T2 6Fw 
ana ull(t2), which can  be  obtained  by  the  equation 

since g(t) = 0 f o r   t c  (0,t2), 

5. Keep pll(t) = p*(t) = $- R%hwl1.  Compute Xll(t)  by 
2 

w (t) by  (7.24) and numerically  integrate  wll(t)  until t where P ( t  ) = 0. 

If F( t )  remains  negative f o r  a l l  t E (t2, T), the computation is  repeated 

again from procedure 1 with a d i f f e r e n t   i n i t i a l  guess for (cyl1(0) - hll(0)). 

11 3 3 

6 .  Consider t as a  time of final  observatlon  cutoff  by  applying  an 3 
impulse whose magnitude i s  such tha t  

where t+ i s  the   ins tan t  immediately after the impulse. Note t h a t  Xll(T) = 

wll(T) since r = g = 0 fo r  t 2 t anil ll1q1 remains unchanged during  the 3’ 
impulse. The negative jump i n  p (t ) is  determined by the   re la t ion  11 3 

3 + 

and the  additional  average  ve1.ocity  corrcction due t o   t h i s  impulse i o  gfven 

7. Consider t as a possible time of temporary bu t   no t   f i na l  obscrva- 3 
t ion  cutoff .  Apply a negative jump i n  pll,  whose mount is  t o  be  determined  by 
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i teration,  along  with a posi t ive jump i n  All determined  by (7.29). As a 

result  the  switching  function at t+ again becomes posit ive,  3 

Run through  procedures 2, 3 and 4 to   ob ta in  t 4  and t where t4 is the  time 

when F reaches zero and t is the  time when pll(t)  again  reacheo  the  critical 

curye, i.e., 

5 

5 

NOW determine lll(t5). Since g ( t )  = o fo r  t s ( t  t ), it follows iron] (7.12) 3 ’  5 
t h a t  All must remain constant  during  this  interval.  An i terat ive  search is 

therefore  used  here  to  dctermine  the  size of the impulse a t  t such that 

A (t’) = X (t ). If the  search is successful,  the  computation  then  folluws 

procedure 5 u n t i l  time t6  when F again  reaches  zero. We are now i n  the  same 

s i tua t ion  as the  beginning of procedure 6. The same step i s  therefore  repeated 

3 

11 3 11 5 

i.e.,  an  impulse is  applied whose  amount is t o  be  determined  by  an i t e r a t ive  

loop, e t c . ,   un t i l  t reaches T. Note that each  of the times t3, t6’ ... may 

be  considered as the  time of f i n a l  observation  cutoff  with mean square  terminal 

miss a (t’), all($!), . . . . This computation  gives a f i n i t e  number  of terminal 

variances  a(T)  for  every  guess of the  s ingle   quant i ty  (crll(0) - hl1(0)). The 

solution in this  case  has a form  where r(t) is e i the r  a t  its maxima or zero, 

i. e.,  the  observation rate is bang-bang. 

11 3 

8. If the  above i terat ive  search i s  not  successful, we look fo r   t he  

possibi l i ty   of  a D-S arc. If i n   s t e p  5, t is  such tha t  &(t-) > 0, t cannot 

be the  beginning of a D-S arc. This then  completes  the  computation  cycle  for 

t he   pa r t i cu la r   i n i t i a l  guess  of (crl1(0) - Al1(0)). 

3 3 3 
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9. If i ( t - )  = 0, t is taken as the  beginning of a D-S arc. Note 

that   only a particular  value of (cull(0) - Al1(0)) w i l l  l e a d   t o  this condition. 

TO proceed, we compute ? ( t )  from (7.22)  by se t t i ng  k(t) = 0, use (7.16) t o  

compute pll(t), (7.15) t o  compute X l l ( t )  and  numerically  integrate cyll and wll. 

This  computation  continues u n t i l  time tm when r again  reaches i t 6  m a x i m  

value (R). Now every  point   tc( t  t,) i s  a possible time of final  observation 

cutoff by  simply  applying an impulse which makes All(t+) p: a l l ( t ) ,   t s ( t  , t,). 
Moreover, every  point t G ( t  tm)  is  a l so  a possible  time of temporary obsena-  

t ion   cu tof f ;   in  which case, the  computation  proceeds  through  an i t e r a t ive  loop 

described  in  procedure 7, and i f  successful,  continues on t o  a time t * (t 
i n  Figure 7.1) when F again  reaches  zero. Note t h a t  t6* is a g a b  a possible 

time of   f ina l   o r  temporary  observation  cutoff and, i f  +(t6*) = 0, t6* i s  €1160 

a possible   s tar t ing  point   for  a second D-S arc and w e  may then  proceed  along 

t h i s  second D-S arc  and repeat  the  procedure  again.  Typical F ( t ) ,  r(t) and 

p,,(t) h i s tor ies  are shown i n  Figure 7.1 with two observation  periods, each 

one ending  with a D-S arc.  

3 3 

3' 

3 

3' 

6 6  

2.7.4 Results of Numerical Work 

For purposes  of i l l u s t r a t ion ,  we present   in   th i s   sec t ion  same of the 

numerical r e su l t s  w e  have obtained  in  applying  the  computation  procedure 

outlined  in the previous  section. The following  parameters  are  used  defining 

t h i s  approach p idance :  T - 10 sec (-10 days), vf = 3 km/sec, us = 1 milli- 

rad, R = 270 x 10 (sec-l)  (approximately  once/hour). The in i t ia l   uncer ta in ty  

is taken t o  be wl1(0) = 3000 km (corresponding to   i n i t i a l   ve loc i ty   unce r t a in ty  

of 3m/sec). We suppose tha t  k = 0.09. 

6 

6 

For various  values  of  the  Initial  guess  parameter ( ( ~ ~ ~ ( 0 )  - Xl1(O)), a 

f i n i t e  number of r m ~  terminal misses Jq) was obtained  together  with 

the associated  costs. For an  exceptional  value  of (cyl1(0) - A ~ ~ ( o ) ) ,  we were 
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Fig.7-1 Typical F,r and p Histories. 
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l e d   t o  a Second guess PEUYmeter, namely, the  time  of  leaving  the first D-S 

arc. For an exceptional value of the  second  guess  parameter, we  were l e d   t o  

a t h i r d  guess parameter, the  time  of  leaving  the second D-S arc.  Four different  

types of observation rate h i s to r i e s  were obtained,  and  these are shown i n  

Figures  7.2-7.5  together  with  the  corresponding  projected miss his tor ies .  

Here, all(T) and a nonnalized  measuring rate r ( t ) / R  are plotted  versus  the 

normalized  time t/T. All together ,   in   this  way, the minimum cost   for  any 

terminal miss was obtained and i s  shown in  Figure 7.6. 

Figure 7.2 shows  Case 1 where there  is only one period of measurement 

a t  the m a x i m u m  rate. In  addition to   the  projected rms miss, we have a l so  

included  in  the same f igure  the rms predicted miss ,I=). It is seen 

that   the   control  i s  turned on after having measured a t  a maximum r a t e   f o r  

some time and the  control  always  ends with  an  impulse a t  the  time of f i n a l  

observation  cutoff.  This i s  ref lected by a downward  jump i n  the nns miss 

and the  predicted mfss a t  t h a t  time. Note that  wll(t) = al l ( t )  - p,,(t) 

remains unchanged during  the impulse. Case 1 app l i e s   t o  rms misses from 3000 

lun dam to approximately 750 km and is obtained  by  varying  the  init ial  guess 

of (all(0) - Xl1(0)) from nearly  zero up t o  a c r i t i ca l   va lue  where cases 2, 3 

and 4 start. 

Figure 7.3 shows the   typ ica l   so lu t ion   for  Case 2 where there is one 

period of measurement ending  with a subperiod of observation at ~ C G S  than maxi- 

mum rate .  The latter corresponds t o   t h e  D-S arc. Note tha t  each point on the 

D-S arc  is  a possible time of final  observation  cutoff.  A typ ica l  one is 

shown by the  dotted  l ine.  Case 2 app l i e s   t o  rms misses from approximately 

750 km d a m   t o  200 km. 
By taking each point on the  D-S arc as a point of  temporary  observation 

cutoff, we  obtain type 3 which is plot ted i n  Figure 7.4 It consists  of two 
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periods of observation where the  second period is always a t  maximum rate .  

There are two impulsive cont ro ls   in   th i s   case ;   the  first one is  applied on 

leaving  the D-S arc  and the  second one is applied a t  the  end  of the second 

in te rva l  of  observation. Case 3 applies t o  rms misses from 200 km t o  140 km 

and a l so  from 45 km down t o  zem . 
The gap  between 45 lan t o  140 km i s  f i l l e d  up by Case 4, shown i n  

F i v e  7.5, involving two intervals  of observation,  each one ending  with a 

D-S arc. Any point on the second D-S arc  is  a possible time of f i n a l  observa- 

t ion  cutoff as shown by  the  dotted  line. 

In  Figure 7.6, where we show the  plot   of rms terminal miss versus  cost, 

we have indicated  the  range of rms miss corresponding to  the  various  cases.  

Note t h a t   i n   t h i s  example, no matter what the  desired  terminal  accuracy is, 

not more than two observation  periods are required.  In a modified example, 

where the  cost  of  observation k was somewhat lower, w e  required  only one 

relatively  long  observation  period. We may expect  that much higher  costs of 

observation w i l l  require  several  observation  periods  in  order t o  achieve a 

reasonably low terminal miss. Each obsenration  period, of course,  terminates 

with  an  impulsive  correction. It i s  i n t e r e s t i n g   t o  compare th i s   cor rec t ion  

strategy with  the  purely  discrete  strategy  in  References (l), (2) and (3). 

2.7.5 A Two-Dhensional b t e n s i o n  of  the Problem 

The result   derived  in  the  previous  section is now extended, a t  least 

in   p r inc ip l e ,   t o  a planar  transfer problem. A description of such a planar 

t ransfer  problem is  given in  Section 2.1. In  this  case,   the  variance  of  the 

error   in   the  predicted miss, x1 (T, t )  - x1 (T, t), is  now the 1-1 element 

of a 2x2 position-prediction  error  covariance matrix E ( t ) ,  which s a t i s f i e s  

the  matrix  Riccati  equation: 

f i  
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where N(t) is a positive  semi-definite matrix measuring measurement effect ive-  

ness  relative t o  both  terminal  position  canponents. The variance  all(t)  of 

x ~ ( T ,  t) satisfies in  place of (7.5), 

where r is a 2x2 matrix  given by  

Note that t r  { rE(t)   N(t)   E(t))   essentially  picks  out  the 1-1 element of 

the  2x2 matrix E ( t )  N(t)  E(tf . 
In  place  of the scal.ar  adjoint cull(t), we must now introduce a 2x2 

symmetric matrix M(t)  and  minimize a Hamiltonian: 

Since  the  terminal  constraint i s  only on all(T) = pll(T) + wll(T), A l l ( t )  

and M ( t )  must sa t i s fy  the end constraints,  
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Instead  of  guessing a s ing le   i n i t i a l   quan t i ty  \X1,.(0) - al1(O)\, we  now have 

t o  S c s s  three ini t ia l .   quant i t ies :  { x~,.(o> - ml1(o)} , mE (01, m 2 2 ( ~ ) ,  and 

s t r i v e   t o  meet t he  three end conditions (7.38). Note tha t   F( t )  = 0 prcccded 

by times when F S 0 yields  a possible  final  cutoff  time  only if nu and mz2 

also vanish at t h a t  time. $le  may expect i n   t h i s  way to   arr ive  eventual ly  a 

one-paramcter fa-nily of solutions  corresponding t o  various all(T). 

This  two-dimensional problem can  have an  interest ing  feature  which is 

missing from the  one-dimensional problem. Suppose t h a t  we not  only  rrish t o  

econmize on t o t a l   f u e l  and t o t a l  nunber o l  observations  but  that we have, i n  

addition, a choice  betvecn  several  kinds of observations. For examplc, we 

m y  have  onboard capability  for  measwin(= angle, range and range-rate fi-oz 

eit 'ncr  "mth  or  the  dcctination  planet.  In economizing on an  appropriateSy 

weighted t o t a l  nunbcr oT observations we would l i k e   t o  know what proportions 

of the  observations a t  my time  should be a l l o t t e d  to the  various  kinds. 

s h a l l  suppose tha t   t hc re  is a t  any time a maxi rnu rn  (appropriately  weighted) 

t o t a l  measurement ra te .  Formally,  then, we seek t o  minimize 

where 

k ( t )  = - rj(t) E ( t )  N j ( t )  E ( t )  r (t) 2 0 (7.40 1 
J 

j 

and  where the  (nonlalized)  total   rate  does  not exceed unity:  



The minimization of €I w i t h  

lead8 Media te ly   to :  

a l l  r = 0 at aqy 

If, at  sane time, 

minimizes F 
j 

J 

respect t o   t h e  r ' 8  subject t o  (7.41) and (7.42) 
CI 

time when a l l  F > 0 

Min (F ) < 0, then r * = 1 for  the j* which 

and other r = 0 

J 

J J  J 
3 

The times a t  which  more than one value of j minimizes F are assumed here t o  

be only momentary. If Min (Fj) = 0, we  have the  possibility of D-S a r c  as 

before. 

J 

j 

The reason that t h i s  choice i s  trivial in  a one-dimensional problem i s  

that  Min (F ) 0 reduces t o  (cyl1 - All) wl: Max (a ) > k (> 0) so that  we 

always minimize a itself (after  the r ' 8  have  been normalized). This tells 

us, fo r  example, when t o  switch from angular measurement of the  vehicle-Earth 

J j  j J 
J Ll 

direction  to  angular measurement  of the  vehicle-planet  direction. In  two 

dimensions, however, because of the  general dynamic coupling between terminal 

position  determination imprwement in  the x and y directions, it is no longer 

clear a t  any time which kind of information is  going t o  be most effective in 

the long  run. The rule for selecting j , nevertheless, is  easily included 
* 

In the two-dimensional  computation scheme f o r  an optimal  policy. 
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2.8 - O??t.@*-DLscrete.  .Li.ne_ar-Co&rol Strate-ey  Includin& Engine Mechanization 
&-rorS- ~ 

Minimum effor t   theory as developed  by Breakwe11 and St r iebe l  5 shws 

tha t   t he  optimum l inear  strategr is continuous. However, prac t ica l  imp3.emen- 

tation  often  requires that corrections be carried  out a t  d iscre te  times. A 

discrete  strategy  corresponds t o  the  case  in  which trajectory  corrections 

are executed  by  discrete  impulsive  velocity  corrections  (i.e.,  the  control 

acce lera t ion   u( t )  is replaced by several impulses). 

This section  investigates  the  solution of the  optimum discrete   s t ra tegy 

for  controll ing  only one terminal miss (x,) again assuming linear  control.  ~n 

other words, w e  assume t h a t  the discrete  corrective  velocity  increments  are 

proportional to  the  instantaneous  predicted miss distance. The mathematical 

problem i s  e s sen t i a l ly   t ha t  of f inding  the areas as w e l l  as the spacings  of 

these  multiple  corrections which w i l l  s t ee r   t he   veh ic l e   t o  meet the  desired 

accuracy  with a minimum expected amount of to ta l   ve loc i ty   cor rec t ion .  

The r e su l t s  of this   invest igat ion seem to   i nd ica t e   t ha t :  

o three to   four   cor rec t ions  are very   c lose   to  opt- and t h a t  

almost no advantages  can be obtained  by  incorporating  addi- 

t ional  corrections,  and 

o the o p t b  corrective  strategy is discre te  when engine mechani- 

zation  errors  are  included and that there  is an optlmum  number 

of  corrections  for a given  size  of  engine  mechanization  error. 

The presentation of t he  material in   t h i s   s ec t ion  is divided  into  three 

parts. Section  2.8.1  outlines a mathematical  statement  of  the  discrete 

optimization problem. Section 2.8.2 shws  how the  optimum solution  ( the 

timings and the  amount of  each corrective  thrust)  can  be  obtained. The 

technique is  based on Dynamic Programming 1-eading t o  an o p t i m   s o l u t i o n  

consis t ing  in   paxt   analyt ical  and i n   p a r t  computational.  Section  2.8.3 

gives  the  results  of some numerical work applying  the method developed i n  

t h i s   s t u d y   t o  a simple  one-dimensional model. 
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2.8.1 Formulation of the  Discrete  Optimization Problem 

Iet t, t2J  ... , % be the times  by  which  the  corrections arc 

applied. Then the  Unear  feedback  gain  g(t)  can be writ ten as 

where 

0 5 k( t i )  < 1 
mqJ 

The required  velocity  correction 

where xl(T, t l )  is  the  predicted A 

(8.3) 

miss distance  immediately  before  the 

correction. Note that equality  in  (8.2)  implies a "full  correction' '   nullif 'y- 

ing the  predicted miss at ti. The determination of a N-Fmpulse  minimum e f f o r t  

strategy  requires  the  optimization of k( t i )  as well  as ti, the  timings of these 

corrections. 
* 

Let Pll(t;) and pl l ( t f )  be the mean square val.ues  of the  terminal. miss 

distance  immediately  before and after  the  correction.  Substi tuting (8.1) 

in to  (6 .5)  and  (6.6) shows 

* 
For the moment, we  w i l l  assume negligible  engine  mechanization  error. When 
engine  execution  errors  are  included,  the  total number  of corrections N, a l so  
becomes a variable to be  optimized. 
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while  the  expected  total  velocity  correction becomes 

N 

The problem may  now be  s ta ted as follows: 

Given the system (8.4)-(8.6) with pl1(0) = 0. Find k( t i )  2 0, ti (i=1.,2,.. .,N) 

and N which minimizes  (8.7) f o r  a fixed mean square  terminal miss a,, (T) where - .. . " ". ". . 

tN being  the  time of the 1.ast correction and w1 -,(t) i s  the 1-1 element of 

W(t) which . . s a t i s f i e s  ~. ~ . . the " matrix  differential  equation (4.5). 

This i s  a calcul.us problem with inequality  constraints. The solution 

w i l l  be carried  out  in two steps  using Dynamic Programming.  Note tha t   the  

inequality  constraints pose no computational d i f f i c u l t y  and, in   fact ,   help 

t o  eliminate a Large number of en t r i e s   i n   t he   t ab l e s   t o  be  generated. 

2.8.2 Solution 

We shall first assume that the  correction  times have  been  given and 

proceed with the  minimization  of  k(ti)  conditional on the  given  set  of timings. 

It is  then shown  how the  spacings between these  timings can  be  obtained. It 

should be noted that  the  requirement  k(ti) 2 0 imposes a constraint  on the 

permissible  spacings of the  correction  times. However, the  times  are  not 

explicitly  given. We m a y ,  therefore,   for  the mment assume t h a t  a l l  the 

k(ti)   to  be  obtained  are  actually  greater  than zero. The s i tuat ion  k( t i )  C 0 

can  be  eliminated  easily by inser t ing a simple  logic  in  the  computational 

procedure  used for  optimizing  the  timings. 

- Minimization of Gains ~- Given the Correction Times 

This w i l l  be done by  working  backwards using Dynamic ProgrEumning. 12 

For  convenience, the  constant  factor w i l l  be  dropped. Let 
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, , . ._ "_ 

and  meets the specified mean square terminal miss. Application of the 

Principle of Optimality12 yields  the  recursion  equation 

(8.12) 

end 

1 
+ terms which do not  involve  pll(trJ). 

(8.13) 

Substituting (8.13) i n t o  (8.10) and using (8.4)- (8.6), we f ind 

+ terms which do not  depend on k(tN-l) 1 (8.14) 
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Hence, the optimum gain a t  tN is given  by 

which, when substituted  into (8.14) yields 

(8.1.6) 

Ruation (8.16) is  of the same form as (8.13). It follows that  

J 

i=1.,2,. . . ,N- 1 

We  now have the  equations  for computing the  gains as a function of the mean 

square  predicted miss. Now pl1(0) = 0. Using this,  Equations (8.4)-(8.6), 

and the  expression f o r  the  gains, it i s  seen that  

and 

(8.18) 

Hence, we  may express  the  gains k(tk) as f'unctions of only  the  given  correction 

times by substituting (8.18)- (8.19) into (8.1-7) and (8.12). 

The t o t a l  average  cumulative e f for t   for  a given se t  of correction  times 

is Lo. It can be easily  verified and we  shall omit the  detai1.s t ha t  
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N- 1 

(8.20) 

The only  remaining problem nan is  t o   f i n d   t h e  optimum settings of the corrcc- 

t i on  t i m e o  which  minimize Lo such t h a t  k ( t i )  2 0. Udortunatcly, this tedious 

problem  does  not y ie ld   readi ly  t o  analytical.  solutions. However, it turns 

out   that   the  optinnun times can  be eas i ly  computed  by using Dynamic Programming. 

Since  only  the  correction  times ti (which run  over a f ini te   interval . )  need t o  

be  quantized and it appears  that  an  adequate  solution  involves  only three t o  

four   correct ions,   the   usual   di f f icul ty  of the  storage  problm and the accumu- 

l a t ion  of quantization  errors  associated  with computation by Dynamic Program- 

ming disappears.  Furthermore, it will be  seen  that   this method of finding 

the  correction times remains essent ia l ly  unchanged when engine  execution  error 

is included. 

Computation Procedure f o r  Optimlzing the  Correction Times 

The algorithm  for  computation  involves a procedure  based on Dynamic Pro- 

gramming. Inspectlon of (8.20) shows t h a t  Lo can  be wri t ten as 

(8.22) 

1=2,3, ..., ~ - 1  
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(8.24) 

It  follows  frau  the  principle of optimal.ity  that 

The  computation  proceeds  forwaxd  with 

(8.26) 

and involves  constructing  the  tab1.e~ Ui(ti+],).  It  is to  be  noted  that  the 

total  number N need  not  be  fixed  in  advance  and  that  by  the  proper  selection 

of the %, the  optimum  k-impulse stratem can  be  obtained  before  proceeding 

to  the  computation of the  k+l-impul-se  correction  strategy. A large  number of 

unnecessary  entries  in  each  table  can  be  eliminated  by  including  in  the  computa- 

tion  procedure  the  constraints  that  ti S ti+l  and  that  each  k(ti)  must be 

positive. 

IncluGion of the  Mechanization  Error 

The  analysis so far has assumed  that  the  engine  mechanization  errors 

are  negligible.  The  same  analysis,  hawever,  can  also  be  used  to  include  the 

effect  of  these  random  errors.  The  mechanization  errors  to  be  considered  in 

this  paper  are  assumed  to  be  of two varieties,  both  of  which  are  normal,  inde- 

pendent  with  zero mean and  constant  variances. 
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a. Engine Execution  Error. The randm  engine  execution  error is 

assumed t o  be  in   the  direct ion of the  correction  with a standard  deviation Q 

The ef fec t  of t h i s   e r r o r  is t o  increase  the  variance of the  predicted miss. 

It should  be  noted that the   e r rors   in  the transverse  direction  effects  only 

the time of arr ival   s ince  the  or ientat ion of the  engine  has been  optimized 

i n  the direction of maximum sens i t iv i ty  miss distance. 

8' 

b. Accelerometer  Readine  Error. This i s  the   e r ror   in   the  

knowledge of the actual  amount of velocity  correction  used and is assumed 

t o  be additive  with a standard  deviation ua. This random error  causes a loss 

in  information and increases  the  vai.iances of the estimation  errors. It t u r n s  

out that t h i s  i s  equivalent t o  applying  impulses at the  correction times t o  

the  right-hand  side of Ekpation  (3.3)  (or  equivalently Eq. (4.5)). The e f fec t  

of these  impulses i s  t o  cause a jump (or  discontinuity)  in  the elements v ( t )  J 

i, j&4, immediately after  the  correction. 
id 

It can be shamU that  the  uncertainty  introduced  into  the  covariance 

matrix of the  estimation  error a t  the  correction  times is  given  by 

v ( t f )  = V(t',) 

where B(ti) is a 4x4 matrix 

elements in the lower r i g h t  

given by 

r 

+ B(ti) (8.28) 

consisting of a l l  zero  elements  except  the four 

corner, This submatrix of nonzero  elements is  

4 

where 
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In addition, (8.6) is replaced by 

r i+l t- 

where 

u2 = 2 

The second term i n  (8.31) shows the  effect of the increase of the variance 

of the  predicted miss due t o  the engine  execution  error. 

Now the computation  procedure outlined so far leads t o  an optimum 

solution only in  the  case of ua = 0 (no accelerometer  reading  error). In 

general, a more elaborate computation w i l l  be required by the  addition of the 

accelerometer  reading  error. This is because, i n  th i s  case, (8.21) can no 

longer  be  written as a sum of terms,  each one being a function of two variables 

only. In  other words, each of the Ai appearing in  (8.21) is  now an expl.icit 

f’unction of a l l  the  correction times  before ti as V(t) now depends on the 

correction times. The  method of solution  described  in t h i s  paper clearly 

leads t o  an upper bound solution. However, the numerical results of an 

example studied  in  the next section  indicate  that th i s  bound is quite good 

ad, i n  fact, can  be  used frui t ful ly  as an I n i t i a l  guess for a @adient pro- 

cedure if optimum solution is  desired. In gett ing  this upper bound solution, 

the  addition of the  orbit  estimation  uncertainty due t o  the  accelerometer 

reading  error is taken  care of  by storing the elements of V(tf) along with 

table Ui(ti+J 

4.8.3 Application t o  a One-Dimensional Model and Discussion of Results 

The  same simple  one-dimensional model used in  the previous  section 
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is considered  here. The parameter  values assumed defining  this  approaching 

guidance is given i n  Table 8.1. The r e s u l t s   a r e   g i v e n   i n   F i w e e  8.1-0.3 

and  Tables 8.2-8.4. 

Table 8.1 

ambo1  Dcscription  Values 

T Time from start t o  impact 6 10 see-10 days 

4 3 )  Standard  deviation of i n i t i a l  
veloci ty   error  3 m/sec 

At Time between  measurements 1 hour 

‘6 Standard  deviation of measurement 
e r ror  1 millird. 

vf Reht ive  veloci ty  between the  vehicle 
and target  planet 3 h / s e c  

./allcT> Standard  deviation of the desired between 25 km - 
terminal miss 2000 km 

In  Figures 8.1-8.3 the  cumulative  average  velocity  corrections  are  plotted 

against  the rms terminal miss for  various  combinations of u and u with up 

to   f ive  correct ions.   Figure 8.1 shows the  case of no mechanization  error. 

The resu l t   ind ica tes  (which seems t o  be  typical   in  a l l  the  other  cases)  that  

three  to  four  corrections  are  very  close  to optimum and t h a t  very l i t t l e  

cy B 

advantage  can  be  gained by adding  additional  corrections. It is  lcno\.m t h a t  

the optimum solution  for  this  case  requires  continuous  corrections. A con- 

tinuous correction  strategy  based on  minFnun effor t   theory developed  by 

Breakwell  and St r iebe l  i s  actually  obtained  for  this  particular  casc.  The 

resu l t s   fa l l   very   c lose   to   tha t   ob ta ined  by using  five  corrections and the 

difference seems t o   a r i s e  fran the  numerical  accuracy of the computation  (the 

grid  size  used  for  the Dynamic Programming computation i e  lo4 seconds). 

2 -80 



The case u = 0 and u - 0.45 m/sec is  shown i n  Figure 8.2. It U B "  
d i f f e r s  from t h a t  given in  Figure 8.1 in   t ha t   t he re  now exis t s  an opt imn 

number of corrections  for a given t e m i n a l  miss. This can  be  extracted 

*om our  numerical r e s u l t s  by noting  that   the optimum solution  with a given 

nus terminal miss f o r  N corrections  requires more average e f for t   than   tha t  

f o r  N - 1  corrections.  For example, f o r  an rms t e m i n a l  miss of 500 km, using 

four  corrections  requires  less  effort   than  using  f ive  corrections.  This is, 

of  course,  intuitively  expected  since  the  effect of the  engine  execution 

e r ror  I s  t o  increase  the mean square  of  thc  terminal miss at each  correction 

time.  Figure 8.3 shows the same plot  by including,  in  addition,  the 

accelerometer  reading  error. Here we l e t  a = 0.45 m/sec al though  rcal is t ic  

values would be much smaller. The curves  represent  only  the  upper bound solu- 

t ions.  The e f fec t  of this   addi t ional   noise  is very small and  secms t o   s h i f t  

the  solution  curves of Figure 8.2 up and t o   t h e   l e f t .  For example, f o r  an 

rms miss-distance of 500 lan, the near-optimum solution  given  here  requires 

only  three  corrections. 

U 

Tabulated i n  Table 8.2 are  typical  values of the  corresponding t h e s  

and the  corresponding  average  effort  requirements  for a n  rms distance of 

70 Ian (only  the  total   costs  are  given  for more than  four  corrections). 

Results  for  three  separate  cases  are  presented: 

1) ucy = ag n o  

2) ucy - 0 , uB = 0.45 m/s 

3) uu = up = 0.45 m/s 

This table  shows, f o r  example, t h a t  a t o t a l  of f ive  corrections is optirmun 

for  case (3), whereas the optimum solut ion  for   case (2) requires  eight  correc- 

t ions.  Table 8.3 shows the same comparison f o r  an rms miss-distance of 500 km. 
In  order t o   g e t  a "feel"  of  thc  difference between our upper bound 

solution and the optimum solution when the  accelerometer  reading  error is 

Included, a gradient program based on the method of Newton is bui l t   us ing  as 
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an i n i t i a l  guess  the  upper bound solution we have  obtained. No provision 

is  made to   t ake   care  of the  inequality  constraints  in  this  gradient  proptun 

since it was anticipated (and ve r i f i ed   i n   t h i s  example) t h a t  our i n i t i a l  guess 

is  very  close to the  optimal  solution tha t  inequality  constraints w i l l  not be 

violated. 

Consider a change in  the  loss  f 'unction (8.20) due t o  changes in   t he  

correction  times ti , i=1,2.. .,N. This  change is  expanded t o  second order 

i n  A t i  so that 

where A t  i s  a N-vector  with  elements A t i .  Minimizing (8.33) with respec t   to  

A t  by  ignoring  the th i rd  order term yields  

which is then  used t o  obtain  the  next guess of the  correction  times. This 

procedure  has  proven t o  be  very  effective if the i n i t i a l  guess is  very close 

t o  the optimum and if the number of va r i ab le s   t o  be optimized  are few. It 

is  an improvement over  the standard gradient  procedure i n  tha t  it specif ies  

the  s ize  and the  direct ion of the  next  step  during  each  Iteration. It is  

found t h a t  the  optimal  solution can  be  obtained  in  three  or  four 

iterations.  Table 8.4 shows a comparison of the  upper bound solution and 

the  t rue optimum solut ion  for   the  case of four corrections  with an rms t e r -  

minal  miss of 70 km. As expected,  the  difference i s  seen t o  be very small 

and i s  only of the  order of 0.3%. 
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Table 8.2 
NORMALIZED CORRECTION TIMES AND THE CORRESPONDING 

AVERACE EFFORT w m  RMS MISS = 70 m 

Time (1068) (2Eg/s Correction  Correction Cost Correction Cost 
Time Time ~. . . . . . . . . 

1 0.94 49.780 0.94 50.070 0.95  59.676 
" - ~ .  . ~- T o t a l  49.780  50.070  59.676 

2 0.65 8.378 0.66 8.615 0.68 9.196 
0.94 5 9 567 0.94 6.152 0.95 6. 9 1  

Total 13 945 14.767  16.117 

3 0.51 5- 452 0.51 5.418 0.55 6.136 
0.80 3.108 0.80 3.281 0.85 3.910 
0.94  2.478 0.94 3.158 0.96 3 346 

~~ Total 11.038  11.857 13 -29  

4 0.44 4.147 0.45 4- 330 0.48 4.855 
0.67 2.467 0.70 2.710 0.75 2.892 
0.85 1.935 0.87 2 173 0.90 2.406 
0.94 1.693 0.95 1.882 0.96 2 398 

~ ~~ Total 10.242 11.095 12.551 

5 Total 9.914 10.761 12.477 

6 Total  9.747  10.627  12.504 

7 Total 9.651 io. 576 12.617 

8 not computed io. 567 not computed 

9 not computed io. 581 not computed 

10 not computed 10.604 not computed 

" ~~ 

~ .~ ~ ~- 

- 
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Table 8.3 
COMPARISOH OF THE AVEWKE EFFORT 

WITH Rm MISS - 500 KM 

Total  Cost 

2 5.845 6.074 6.289 

5 5.637  5.973 6.456 

Table 8.4 
COMPARISON OF THE NORMALIZED CORRECTION TIMES AND TIE 

CORRESPONDING ETEOFlT IOR A NEAR-OPTI" SOIUTION ANTI THE 
OPTIMUM SOLUTION WITH (RMS MISS = 70 KM; ua = OB = 0.45 M/SEC) 

~~~~~~ ~ ~ 

Near Optimum Solution 
~~~ 

Optimum  Solution 
Correction 
Number Correcti n Co4t  Correct Ion 

Time (10 e) (2/n)a/e Time 8 Cost 

0.48 4.855 0.448 4.386 
0.75 2.892 0.722 3.016 
0.90 2.406 0.897 2.711 
0.96 2.398 0. *' 2.408 

4 

Tom 12.551 E. 521 
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2.9 Optimum Nonlinear  Control Law 

A l l  the   resu l t s  we have presented so far assumed t ha t   t he  magnitude of 

the control  acceleration is proportional to the predicted miss distance 

Cl(T, t). This assumption  hae allwed us to fo rmla te   t he  guidance problem, 

originally  stochastic i n  nature i n  v i e w  of the i n i t i a l   i n j ec t ion  error and 

randam measurement noises, aa an equivalent  deterministic problem in optimal 

control. I n  this   sect ion we sha l l  lymove this  assmption. 

We know tha t  the predicted miss xl(T, t )   s a t i e f i e s   t he   s ca l a r   d i f f e ren -  P 

t ia l  equation, 

where v( t )  is a white Gaussian noise w i t h  spectrum ql,(t). The problem of 

nml inea r   con t ro l   t o  be considered in this section is to find  ul(t)  ~ n d  

%(t )  (both of which are assumed t o  be perfectly executed) as functions of 
f i  xl(T, t )  which minimize6 

E 1 . / =  at 
T 

I c 
J 0 

for a specified  value of 

P1lW = 

The resu l t s  we have obtained  apply  only to   discrete   correct ion 

(9 .3)  

strategies.  However, we may l e t  our discrete  solution approach the 

solution of the colltinuous  nonlinear  correction strategy by inserting more 

correction  times. The nature of the  solution for the discrete model indicates 

that a correction  control is applied at ti (a given  correction  time) if, and 

only if, the  predicted miss distance G1(T, ti) prior to   the  correct ion lies 

8 b W  (or below) a cer tain number, eay ti (or -zi), and that the  effect  of 

the control is to bring the predicted miee after the caTection to  zi (or -zi). 
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This section is divided  into three parte. The formulation and the 

solution of the problem are given in  Section 2.9.1. In  Section 2.9.2, we 

give  the  results of sane numerical work applying  the method t o  a simple 

one-dimensional model. The last section  gives a brief  description of the 

hard  conetraint problem. This i e  a related but   different  problem i n  which 

the   t o t a l   e f fo r t  is s t r i c t l y  limited while minimizing the terminal miss dis- 

tance . 
2.9.1  Formulation - of the  Discrete Mcdel and Solution  Formulation 

" .- ~~ 

Fi r s t  of a l l  we see that the  engine must be pointing  in  the  dlrection 

of maxlmum effectiveness. This  lmpliee that we may write,  without loss of 

generality, 

where, to   recapi tulate ,  

and f ( t )  = f (cl(T,t)) is  a function t o  be determined. 

Ueing (9.4)-(9.5), we see that (9.1) and (9.2)  can  be  replaced by 

reepectlvely. Let X be a constant Usgrange multiplier. 
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Ihe problem I s  then  equivalent t o   f i nd ing  f ( t )  = f (fl(T, t ) )   t h a t  minimizes 

Loss = E 1: I f ( t )  I d t  + A/2 E (9: (T, T ) )  

w i t h  no constraints. 

We shall provide a discrete computation  procedure for  finding  the 

solution of the Continuous problem formulated above. Let us assume that the 

controls   are   to  be  executed a t  a given set of correction  times ti, i=1,2,. . .N 
in   the form of impulses and le t   the   s izes  of the impulsive controls a t  ti be 

denoted by f i  80 t ha t  

N 

f ( t )  = > f i  S(t-ti) 
I= 1 

Let x; and 2: be  the  values of the  estimated miss distance xl(T, t i )  inrmediately 

before and a f t e r  the correction and l e t  Di = D(ti).  Substituting  (9.9)  into 

(9.6) yields  the  stochastic  difference  equation 

A 

c+ = I- 
1 i + fi 

ana 
c- A 

i+l = x ;  + 8 i 

where ci are  independent normal random variables w i t h  zero mean and variances 
2 
' 

u = b( t i )  = i i'" ci,,(t) d t  

ti 

f i  Moreover, x. = 0 and %+1 = x(T,T).  The loss given by (9.8) becomes 
f i  f i  
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m e  problem,. in t h i s  discrete formulation,  becanes t h a t  of finding fi e 
function of *ich minimize6- 19.12)- subJct. .to ,?he stochastic  difference 

equation  constraint (9.10). 

Solution 

The solution w i l l  be  obtained  using Dynamic  Programming. Let 

where E(. . /a)  indicates a conditional  expectation  operation given a. It 

follows from the  Principle of  Optimality12 tha t  

From (9.10) we see  that  / Gi is N(fiDi + $; , u t  ) where  N(a,b) indi- 

cates a Normal randm  variable  with mean a and variance b. Hence, 

P 

0 
kt the optimal control fi be  denoted by fi and let  

f- 
zi = fio Dl + x; 

It is  Clem from (9.14) and (9.15) tha t  if fio f 0, then 
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where 

let us assume tha t  Ki+l(s) is a monotonically  non-decreasing odd function of 

s such that Ki+l(s) = - sgn s for s greater than some  number zi+l. 

Inspection of (9.17) and (9.16) shows that   there   exis ts  a fio C.0  and a 

z > 0 such that (9.17)  can  be identically  satisfied.  In other words, the 

1 
Di+l 

* 
i 

right-hand side of (9.17) is 1. Substit;uting t h i s  zi into (9.18) and making 

use of the   fac t   tha t  Ki+l is  odd lead t o   t h e  result that the optimal control 

is given by 
A 

Differentiating  both sides of (9.14) w i t h  respec t   to  x; and using (9.15)- 

(9.16) and (9.19) yields a recursive  equation for computing ki(s) 

/r 

* Thi6 is because we have assumed t ha t  Di > D i + l .  It w i l l  not have a solution if 
DL < D i + l .  What this means physically  ie that if the  effectiveness of the con- 
t r o l  is larger at ti+l than ti , then no control should be applied at ti. 
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It is clear fran (9.20) that if Ki+l(s) is a monotonically non- 

decreewing odd fimction of  s, so is  K, ( 6 ) .  A typical K,(e) has the form 

d z i 

It only remains t o  obtain b ( s )  and t o  verify that it has the form  shown. 

mis can be done by considering  the  one-stage  process. F'rm (9 .13)  we see 

Differentiating  the right-hand side of (9.21) w i t h  respect t o  fN yields 

I 



which  shows  that %(a) is an odd and  monotonically  non-decreasing  Function of 

s and hence  establishes  the  validity of our solution. 

To summarize, we have  shown that there  exists  a  set of "threshold" 

numbers zi 2 0 such  that (see Eq. 9.19) a  control is applied  at ti if, and 

only if, I $- I > zi and the  effect of the  control is to bring the state 

after  the  correction to xi = zi sgn "x. The  set of numbers z can be com- 

puted by (9.16) where Ki+l(s) are  monotonically  non-decreasing odd function 

of 8 computable  backwards by the recursive  equation (9.20). Computation  starts 

at tN with (9.24). 

i 
b+ 

i 

2.9.2 Results of Numerical  Work 

Again, the same  uniform  model is used.  The  parameters  defining 

this  approaching  guidance  are  the  same as that  given in the  previous  section. 

We shall  further  assume  that  the  last  correction  is  a  true  correction  and 

that  the  standard  deviation of the desired  terminal  miss is 1250 lan. It 

can  be  easily sham that the last  correction,  in our case, is to be executed 

at 0.04 x 10 sec.  from time of impact. The  first  correction  time is arbitrar- 

ily set  at 0.64~ f r m  time of impact  and our numerical  work  studies  the 

effect of including various numbers of corrections  between  these two timings. 

The results are given in Figures 9.1 and 9.2. 

6 
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Figure 9.1 gives  the  plot of the  threshold  levels zi versus  the  timing 

of the  corrections  with N, the total number of corrections, as a parameter. 

The camputation is done backwards from t = 0 . g T  using  the  recursive eque- 

tions  derived  in  this paper. To save time, the numerical integration at 

every  step (i.e., over  the  infinite  range) is done by Monte Carlo. It w a s  

found that ,   for  the  case of eleven  corrections,  the  cmputing time is about 

four minutes on I B M  70%. It is  of i n t e r e s t   t o  note from the  resul ts   in  

Figure 9.1 tha t   the  boundary lines  joining  the  threshold  levels approaches 

a continuous  curve. In Figure 9.2 the total expected velocity  correction 

is  plotted  against  the number of trajectory  corrections where the timings of 

these  corrections and the corresponding  threshold  levels  are  the same as 

those  given in  Figure 9.1. The computation is a l so  done  by Monte Carlo. 

The result   indicates,  as has been found i n  other  studies  using  linear  control 

l a w ,  that  the  additional  savings  obtained with more than four corrections  are 

almost negligible. 

2.9.3 H a r d  Constraint Problem 

Within the realm of allowing nonlinear  control,  there is the so- 

called  hard  constraint problem. This ls the problem of minimizing the rms 

values of the  terminal miss distance  subject  to  the  constraint   that   the 

total  (not  the  expected) amount  of the  velocity  capability is  limited and 

specified  in advance. 

Let c; and c l  be  the amount of total   velocity  correction  capabili ty 

inunediately before and after  the  correction a t  ti. Then we have in  addition 

t o  (9.10) the  equations 

C?+1 = c i  
+ 
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Note co is the  prescribed  total  velocity  capability. The mathematical 

problem for   the  hard conatraint case is essent ia l ly  that of finaing fi as a 

function of - two variables c; and which minimizes 

subject to   the   cons t ra in t   tha t  c: 2 0 f o r  a l l  i. 

%is problem, as we have farmulatea above, has been solved by Rosenbloom 14 

ana  has a l so  been  considered by Orford. l5 %e optimum solution which can 

also be obtained  by  using Dynamic  F’rogramming  shows that   there   exis ts  two 

number8 zi (c;) > zi (c,) > 0 such that: 
M * 

(a) no control 1s applied if I Gi I 5 zi (c;) , 
(b)  use a l l  the  velocity  capability lef t  if I I 2 zi (c;) , and 

(c) apply an intermediate  control if zi < I 2; I < zi . 

* 
)c, 

* )c, 

Unlike the  case we have already  considered,  the computation involved fo r  

obtaining the actual optimum solution is rather unmanageable and involves 

creating a large number of tables of functions of two variables. 
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2.10 An - Ehor ~~~~ Analysis ~ Program for  Interplanetary  Transfer 

AB indicated  in  Section 2.1, the  theory developed for  the  basic minirmrm 

effor t   control  is directly  applicable  to  the  case of variable time of a r r iva l  

guidance scheme assuming a l l  errors  l i e  in  the  transfer  plane and tha t  cor- 

rection mechanization errors  are negligible. A d i g i t a l  computer program is 

developed applying this theory t o   t h e  study of guidance problems in   typ ica l  

interplanetary  trips. l6 The program (1)  performs a linear  error  analysis 

of typical  interplanetary  trajectories  with assumed rms injection  errors 

and measurement histories,  and (2) ccmputes a trejectory  correction 

strategy based on the  basic minimum e f fo r t  theory. It includes a near- 

optlmum discrete  trajectory  correction  strateey  using impulsive corrections 

whose spacings are chosen t o  approximate the ideal continuous strategy. The 

analysis of these near-optimum discrete  strategies extends  the  study by a 

Monte Carlo simulation t o  include  the  effect of correction mechanization 

errors  as well as the  effect  of varying  the  time of the last correction. 

We present  in  this  section a brief description of the  various sub- 

programs that  have  been  developed as well as the computer results  giving 

the  velocity requirement8 for  two typical  interplanetary  transfers (Earth- 

Mere and Esrth-Venus-Mars swingby). 

2.10.1 Description of the Computer Programs 

The main  program tha t  performs the linear  error  analysis and includes 

the continuous minimum effort   correction  strategy  for  typical  interplanetary 

t r ips   consis ts  of two versions: (1) a direct   t ransfer  program that  considers 

transfers between two massless planets and (2) a swingby transfer program 

t h a t  considers  transfers between two massless  planets  via a third  planet 

whose gravity  f ield  le  taken  into account. Both versions assume that the 

errors are confined t o  the  t ransfer  plane. 
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A. Direct  Transfer  Program 

This  program assumes that  the  vehicle  is  injected  fran a massless 

Earth  and  is  transferred  to a massless  planet.  The  transition  matrices 

@(T, t), and  hence  the  sensitivities D(t), are  obtainable  from  perturbations 

of a nominal  Keplerian  trajectory.  The  program  at  present  allows  four  kinas 

of measurements  for  orbit  determination.  These are angular  measurements 

of  the  direction  of  the Sun, the  target  planet,  and  the  Earth,  relative  to 
the  star  background,  and  range-rate  information  from  an  Earth-based  radar. 

The  accuracies  and  frequencies of these  measurements  are  assumed  to  be  con- 

stant  in  time.  The  program  also  has  the  option of turning  on  as  well  as 

turning  off  the  information  from  the Earth in  the  middle of the  trip,  and 

turning  on  the  angular  information  from  the  target  planet.  It  should  be 

noted  that  the  information  from the Earth cannot  be  turned  on  immediately, 

as the  formulated  information  rate  is  initially  infinite. 

Other  inputs  to  the  program  are: (1) the  eccentricity,  semi-major 

axis,  trip  time,  and  the  initial  true anmoly; these  quantities  specify 

the  transfer  ellipse  by  Kepler  theory; (2) the  initial  injection  errors  in 

the  transfer  plane  which  serve  as  the  initial  conditions  for  the Kalman 

covariance  matrix V(t) ; and (3)  the rms accuracy  of  the  measurements and 

the  corresponding  intervals  of  observation;  this  and  the  information  in (2) 

allows  us  to  integrate  the  equations  governing V(t). 

B. Swingby  Transfer Program 

This  program  extends  the  program  for  direct  transfer  to  the  case 

where  the  transfer  is  via a third  planet.  The  nominal  transfer  orbit  con- 

sists  essentially  of  two  heliocentric  ellipses  connected  by a planet-cen- 

tered  hyperbola  near  the  flyby  planet.  The  additional  inputs  for  this 

program are the  necessary  parameters  which  specify  the  second  ellipse  as 

well as  the  ratio of the  mass of the flyby planet  to  that of the  sun. A 
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"patched-conic"  treatment of the nominal trajectory is used. The trajectory 

is taken as a planet-centered  hyperbola  within a "sphere of Influence"  near 

the  flyby  planet such that the   ra t io  of the Sun's "effect ive"  a t t ract ion  to  

tha t  of the  planet is less than  the  ratio of the  planet ' s   a t t ract ion  to   the 

( to ta l )   a t t rac t ion  of the Sun. The boundary of t h i e  "sphere of infuence" 

is given by 

distance from vehicle  to  planet mass of planet 
distance fram planet   to  Sun mass of sun i'5 

and t h i s  I s  where the two el l ipses  are patched to  the  planet-centered hyper- 

bola. me relat ive velocities of "approach to" and "depa2"ure from" the 

.( 

flyby  planet must be the same so that the  point of closed apprcwch t o   t h e  

flyby  planet is halfway  along  the  hyperbolic  arc. 

C. Discrete Minimum Effort Program ,. . 

This is an  additional program which analyzes near-optimum discrete 

minFmum effort   control  strategies  including  the  effect  of mechanization 

errors. Given the number and the  timings of the  corrections,  the program 

computes the optimum gain  k(ti) by using (8.17). A Monte Carlo  simulation 

based on this   discrete   s t ra tegy i s  performed. 

D. Fixed Total  Velocity  Capability 

If we  assume a fixed total velocity  correction  capability somewhat 

greater  than  the  theoretical  expected  velocity  requirement,  the Monte Carlo 

program has  the  additional feature of being able to   control   the  time of the 

last correction so t ha t  a l l  remaining f u e l  is used on t h i s  last control, 

and the estimated mise at t h i s  time thereby  reduces t o  zero.  In  other 

worde, the last correction occur8 at the time tN such tha t  

[ Cl(T, 5) ] / [ D ( t &  ] = velocity  capabili ty remaining 
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$ being  then a random variable. It should  be  noted tha t  %(T,t) for  t 2 tN 

is a simple Wiener process. 

In the (rare) event that  the  propulsion left  aboard is not  sufficient 

t o  make the  correction  called  for at an   ear l ie r  time ti, i S N-1, then the 

program assumes, of course, that  the  correction  uses a l l  the  fuel  available. 

This run will then  give a terminal miss which is the miss immediately a f t e r  

this correction. 

2.10.2 Examples and Numerical Results 

The programs described in   the previous  section  are used for   the 

study of guidance problems connected  with two typical  interplanetary  tr ips.  

The two t r i p s  were selected from the  resul ts  compiled by Lockheed. l7 They 

are: (1) a 204-day t r i p  from Earth t o  Mars leaving  Earth on  December 30, 

1966; and (2) a 245-d.a~ t r i p  t o  ~ a r s  fly<.ng by venus (seventy-five days t o  

Venus and one hundred and seventy days t o  Mars). The t r i p  leaves  Earth on 

September 6 ,  190. 

The in i t ia l   in jec t ion   e r rors   a re  assumed t o  be in  velocity only. These 

errors  can be obtained by propagating  the  errors a t  launch along  the hyper- 

bolic asymptote  predetermined f o r   t h i s   t r i p .  Typical  values of the  errors 

a t  launch based on the Atlas-Agena booster were used. It turns  out, after 

a simple  computation, tha t   for   the  204-day t r i p   t o  Mars, the 21C2 covariance 

matrix  elements of the   ini t ia l   in ject ion  veloci ty   error  are of the  order of 

15-20 m/sec and are  given specifically by 

The aame injection  errors were used for   the  f lyby  t r ip .  

The following  information rates  were assumed: (1) angle  information 

fran the sun: -10 mrad at a r a t e  of 1/hr; (2) angle  idormation fran IWAII: + 
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+ -2 m r a d  at a rate of I/&; (3) angle  information from Mars: -2 m d  at a 

ra te  of l/min; (4) Doppler information from m h :  -1 m/sec a t  a ra te  of l/min; 

(5) angle  information from Venus (for   f lyby  t r ip)  : -2 mrad at l/min on first 

leg, and z2 mad at l/hr on the second leg. In a l l  cases,  the  information 

from Earth was turned on a f t e r  a wait of 3.6 hours so as t o  avoid an in f in i te  

information rate a t  the beginning. 

+ 
+ 
+ 

"he resul ts  of the 204-day t r i p  t o  Mars are  given in  Figures 10.1-10.3. 

In  these  figures w e  have plotted  the  histories of the rms terminal miss and 

the average  cumulative effort   vs  the time-to-go for   d i f fe ren t  combination 

of  measurement histories.  For the purpose of comparison, we have also  plotted 

in  Figure 10.1 the corresponding near-optimum discrete  strategy  using  four 

corrections (near-optimum in   the  sense that the  timings are not  optimized). 

It i s  seen that  the  correction  effort  required by the near-optimum discrete 

strategy i s  only  about 10 t o  1 5 1  higher  than that  required by the correspond- 

ing optimum continuous strategy. 

The sudden drop in  terminal miss i n  Figure 10.2 is due to   t he  impulsive 

thrust  which is appl ied  just   pr ior   to   the time when the  information from 

Earth vanishes. The control is turned on again very soon (of the  order of 

a few hours) after the  information from Mars is turned on. It is of interest  

t o  note  that   this is  only a f e w  percent more costly  than  the  case of continu- 

ous observation  (see  Figure 10.1). The effect  of adding Earth range-rate 

information i s  sham  in  Figure 10.3. It shows tha t  most of the  errors  are 

corrected  out at the  beginning; and moreover, in   the absence of any angle 

information from the  plsnet,   there  exists an uncorrectable  terminal miss 

which re f lec ts  our lack of knwledge of the  actual  error  in  the  orbit  esti- 

mation. This is  of the  order of 15 km as can be seen by the  leveling  off 

of the  curves  near  the end. It is  seen t h a t  this uncertainty can be eliminated 
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by supplementing the measurements  with angular information  from 

during the last forty days. 

The results of the flyby trip  are  given in Figures 10.4-10.5. Figure 

10.4 shows the histories of the m s  terminal miss and the average  cumulative 

effort  vs  the  time to go, for  the  case  where  only  angle  information is used. 

!J!he Doppler is  turned off when the vehicle  reaches the end of the hyperbola. 

It is interesting to note  that  the  corrective  effort  required  for  guidance 

on the flyby  trip as far as Mars is  not  substantially  greater than the effort 

required for the single  leg  trip to Mars. 

Computer  results  for the Monte  Carlo  simulation of the  discrete  strategy 

shown  in  Figure 10.1 are  given  in  Figures 10.6-10.8. Figures 10.6 and 10.7 

correspond to four fixed  correction  times,  and  Figure 10.8 corresponds to 

three  fixed  correction  times  and  a  randomized last  correction.  Figure 10.6 

gives the empirical  probability  distribution (a sample  size of 100) of the 

effort  used  for  different rms engine  execution  errors  and  different  values of 

rms terminal miss.  It is assumed  that the accelerometer  reading  error u = 0. 

A scatter  diagram of the magnitude of the  actual  terminal  miss  and the curnula- 

tive  effort for the case  of o = 0.2 m/sec is given  in  Figure 10.7. The  point 

marked X indicates the average effort and the average (absolute) terminal 

error  under the assumption of no mechanization  error.  It is seen  that  a  large 

number of points fall to the right  of this m, indicating  that the amount of 
the  fuel  carried  should be considerably  in  excess of the average  amount  used 

with  fixed  correction times.  The  results  in  Figure  10.8  show an improvement 

in the terminal miss distribution,  especially at  the low end, as might  have 

been anticipated. The same figure  also  shows the effect of the loss of infor- 

mation  caused by m accelermeter reading  error. 

CY 

B 
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3. PLANETOCENTRIC GUIDANCE M)R J B W  THRUST INTERPLANETART TRAIVSFER 

3.1 Introduction 

In the law thrust  interplanetary  mission  considered  here, it  is 

assumed  that the engine  is  turned off during the central  portion of the tra- 

jectory so guidance takes place  only  in the  vicinities of the departure 

planet and the target planet.  This  means  that there is  no  midcourse  guidance 

and that  the  midcourse  trajectory  is  determined by the  energy  and  asymptotic 

direction of the vehicle  leaving  the  vicinity of the  departure  planet. 

Accordingly,  departure and approach are  primarily  planetocentric.  Further- 

more,  it  is  assumed  that the low thrust  engine  has  constant  specific  impulse 

so that  guidance  is  achieved  by  changing the  direction  of  thrust  rather  than 

the  magnitude. Battin'* has  considered  the  guidance  problem  for  a  variable 

thrust  engine  in  a  lunar  mission  with  characteristics  similar to this  inter- 

planetary  mission.  He  devised a  feasible (non-opthum) guidance  scheme. 

Recently,  Mitchell has  derived  a  guidance  scheme,  also  for  a  variable  thrust 2 

engine,  considering  only  the  heliocentric  portion  of the transfer. !Che 

problem  considered  here  is to find an optimum gui-ce scheme  for  a  constant 

thrust  vehicle, i.e., a guidance  scheme  which  minimizes  the fuel expenditure 

while  attempting to meet  the  terminal  constraints. 

For the purpose of simplicity, three  additional  assumptions  are  made: 

(1) all the  action takes place  in a  plane  containing the planet  and  the 

vehicle  acceleration; (2) the  vehicle is  propelled at.  constant  acceleration; 

and (3) while  the  engine  is on, the  perturbations  due to the Sun can be 

neglected. The  first  assumption  pennits  the  optimization  scheme to be  worked 

aut  as a  two-dimensional problem. The  extension to three  dimension6  would 

* 
References  referred to In this  chapter are listed  at the end of this chapter. 

~~ ~ ~ 
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be straightforward.  Because the  change  in mass is  small, the  second  assump- 

tion  should  chsnge the original  trajectory  only  slightly,  and  should  have 

negligible  effect on the control scheme. The third  assumption  is  valid  in 

the  vicinity of the planet  and,  once  again,  should  change the  original 

trajectory  only  slightly and have  negligible  effect on the  control scheme. 

The problem of optimizing the original  trajectory  can be stated as 

follows: Given a s e t  of i n i t i a l  condi t ions  (pos i t i on  and w l o c i t y )  and the 

equations  of  motion  (which  include  gravity  and  the  operating  characteristics 

of the engine),  find the  trajectory  which  meets the specified  terminal  con- 

straints  and  minimizes  the loss (in this  case the mass expenditure).  The 

optimization  problem  requires  the  solution to a  two-point  boundary  value 

problem  in the calculus of variations? If deviations  from an optimum 

nominal are small, the  application  of  the  minimizing  conditions  results  in 

a neighboring  optimum  control scheme.  This control  scheme is based on a 

linear  perturbation  from  a  nominal opthum path  and  involves the second 

variation  in the calculus of ~ariations.~ It  results  in a linear  feedback 

control l a w ,  i.e., the  change in  the control (in this case  the  change  in 

the engine  orientation)  is  linear  in  changes  in the trajectory.  If  the 

engine  is behaving  properly  and the only  disturbances are due to deviations 

from the  original  trajectory, any control  scheme  which  satisfies  the 

terminal  constraints  gives the same loss to first order.  In  that  case, 

the abwe guidance  scheme is the  best  one to second  order.  However,  if 

the  engine  misbehaves (i.e., the  thrust i s  too high or too lav), there  is 

a  first  order  change  in  the loss. 

The  analytic  approach to the problem is based  upon  the  fact  that  in 

the vlcinity of the departure  planet, the low thrust  trajectory can be 

divided  into three regions: (1) the  near-planet  region  which  consists of 
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a lakge  number of revolutions  while the vehicle  gradually  spirals  away  from 

the  planet; (2) the transition  region  which  lasts  several  revolutions  and 

in which  the  trajectory  spiral  straightens  out to approach  a  hyperbola; 

and (3) the  far-planet  region  in  which the vehicle  is  propelled to 8 

specified  energy  level  while  asymptotically  approaching  a  specific angum 
direction on a near  hyperbola. In the approach to the target  planet the 

same three regions are encountered,  but in reverse order (that is, (3), 

(21, (1) ) *  

For both the near-planet  and  far-planet  regions,  analytic  solutions, 

including  the  optimizing  condition,  have been derived  for the optimum and 

neighboring  optimum  trajectories.  Each  solution  contains  a  set of five 

arbitrary  constants  (three  of  which  are  assumed to be small)  that  can  be 

used to match  initial  and final conditions. A numerical  Integration 

technique has been  used  in  the  transition  region to check  the  analytic 

solutions  and to match the analytic  solutions  with  the  numerical  solution 

so as to get  one cmplete solution.  Perturbation of the  conditions for an 

optimum  trajectory  provides  a  linear  feedback  relation  between  changes  in 

the control (thrust  direction)  and  changes  in the state  (the angular  dis- 

tance  and  velocity  components)  for  different  values of the Independent 

variable  (radial  distance). 

The  guidance  coefficients  are  the  sensitivities  of the optimum  con- 

trol to changes  in the state  components.  The  guidance  procedure  which 

is  envisaged  here  is that the actual state  components of the  vehicle  are 

compared with the  state  components for the  original optimum  trajectory. 

If the comparison  is  made with the  same  radial  distance  r  for  actual  and 

original, the guidance  coefficients  are  called  fixed-r  guidance  coefficients. 

If the comparison is  made with the same energy, they  are  called  fixed-energy 

guidance  coefficiente. The  same  technique ie used to determine  the  guidance 
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coeff ic ients  on both  the outward s p i m l  when the vehicle is leaving  the 

planet and t h e  inward s p i r a l  when the vehicle is apprmching the planet. 

The terminal  conditions  for the incoming s p i r a l  are assumed t o  be a c i rcu lar  

orb i t ;  hence, the incoming  guidance law (unl ike   tha t   for   the   ou tgoing   sp i ra l )  

i s  independent of the instantaneous  angular  position. It is  noted tha t  

wi th   in i t ia l   and   f ina l   condi t ions  exchanged and no angle  constraint, the 

incoming  and outgoing  spirals are Identical   except t ha t  the signs of the 

veloci ty  components are reversed. An additlonal  complic@tion  for the inward 

spiral is t o  decide when to turn on. The theory  of the second var ia t ion 

provides  an  expression from which the  radial distance  of  turn-on is  easily 

obtained from t h e  known energy  and  angular momentum on the Incoming hyper- 

bola. 

If slow f luc tua t ions   in  dngine  behavior are ant ic ipated,   the   effect  

of such f luctuat ions must be accounted f o r   i n  the guidance law.  The e f f e c t  

on t h e   o p t i m   t r a j e c t o r y  of a constant bias i n  acceleration is obtained 

by rescaling. When there are errors   in   es t imat ing the t ra jectory,  the 

"best estimates'' of the state variables are used  along with the same 

guidance coeff ic ients .  The t ra jec tory  measurement e r rors  have  an e f f e c t  

on both fuel expenditure and terminal  accuracy. Note tha t  the terminal 

errors   for   the  outgoing  spiral  lead t o  a non-optimum spiral entry a t  the 

ta rge t   p lane t  and,  hence,  cause  an added fuel  expenditure on the incoming 

spiral. 

The general  optimization problem is formulated  in terms of  the  calculus 

of var ia t ions  in   Sect ion 3.2 and the neighboring optimum guidance scheme is 

outlined.  Results  for the outward  and imard s p i r a l s  are presented  in Sec- 

t ions  3.3 and 3.4, respectively.  Section 3.3 also  includes  an  outl ine  of 

the  analyt ic   solut ion  for   the  far-planet   region  while   the  analyt ic   solut ion 

for  the near-planet  region is presented  in  Section 3.4 with a der ivat ion  in  
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Appendix A. Section 3.5 discusees  the consequencee of engine fluctuations 

and presents  the effect  of measurement errors  including a numerical example 

using a simplified model of the system. 
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3.2 optimum and Neighboring optimum Control ~ 

In  this  section  an  outl ine is presented of the  calculus of variations 

approach to  the  general  optimization problem and its appl icat ion  to  optimum 

guidance. In the guidance scheme presented  here, it is assumed that the 

or iginal   t ra jectory is an optimum one and correctiona are based on the  devia- 

t ion  from tha t  optimum.  The guidance  does  not return  the  vehicle  to  the 

original  trajectory,   but  instead it causes  the  vehicle t o  follow a neighbor- 

ing optimum trajectory. 

4 

3.2.1 Optimization Problem 

The problem of optimizing  the  original  trajectory can be s ta ted as 

follows. Given a set of differential  equations  describing the system 

where x is the  state  vector  with four components 

g is a vector  valued  function  with  four components 

u is the  control  variable  (the thrust direction) 

r is the independent variable (the radial distance) 

and a s e t  of i n i t i a l  conditions xo, find  the  trajectory which  maximizes a 

terminal  quantity @(x, r )pr  (vhere rf is the  terminal  value of the independ- 

ent  variable) and which gives the specified  values of the  terminal  quantities 
f 

where Y is a vector  valued  function w i t h  q components (q 5 2). 

The differential   equations  satisfied by the optimum trajectory  are: 
* 

* 
EQuations given in  this chapter are numbered as follows: Eq. (k, J) means 
the J equation i n  Section 3.k. 
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where A is the  vector of adjoint  variables  with f a r  components. 3 and 3 
represent 4x4 and 4x1 matrices of partial derivatives,  respectively, and super- 

script T represents  the  transpose  operation. 

The boundary conditions for the equations arc 

0 = (-AT + + vT ) ax r=rf 

where  and  represent  (4x1)  and (qx4) matrices,  respectively, and v is 

a  vector of q constant  Iagrange  multipliere. 

ay 

The equations (2.1)-(2.3) can also be  written  in  terms of the variational 

Hamiltonian H which is defined as 

H =  ATg 

so that 

dx 
dr a h  
- = -  aH 

0 = z  aH 

3.2.2 Lov Thrust  Optimization 

In the low t b s t  optimization  problem  formulated  here,  the  radial 

distance  (r)  is the independent  variable  while the state  vector (x) has 

faur components, circumferential  velocity (ve), radial  velocity (vr), angular 
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position (e), and time (t). The four components of the adjoint  vector (A) 

have  subscripts one through four corresponding to the respective  state  variables. 

The  direction ((r) of the  acceleration is  measured  positively outward from the 

local  horizontal. The  magnitude of the acceleration is a and  the  gravitational 

constant  of the planet  is F. 

For  the  system  under  consideration, the differential  equations  satisfied 

by the optimum  trajectory are as follows. 

The  equations of motion: 

dvO V 
- r " + -  e aCoscr 
dr r 

de v0 - = -  
dr N r 

The  adjoint  equations: 

A1 2v0 - = " "  
dr r N r h"q ' A  3 

V 
+ -  e 1 

2 A3 + 2 A4 
Nr vr 

- = o  d S  
dr 

dA4 - = o  dr 
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The Hemiltonian is defined 8s 

The optimal  control  equations, found by maximizing the Hamiltonian, are 

cos a = I 

(A: + A t ) f  
Thus, the 

using  the 

control (a) can  be eliminated from Equations (2.6) and (2.7) by 

optimizing  condition, Equation (2.8). 

The terminal  constraints  for  the outward spiral   are   the final energy (E  ) 
* f 

and the  final  angular  direction of escape (e,) where 

e, = e + @  

@ = Arc Tan [1/(v, ver)] - Arc Tan [ (l-vg 2 r)/(vrve  r)]  

( 2 . 9 )  

and the  subscript f indicates  the  value of thc  quantity a t  the time of engine 

cutoff a t  radial distance rf. Because the mass flow of the low thrust  engine 

is fixed and positive, minimizing the mass expenditure I s  the same as mini- 

mizing the time the engine is  operating.  Therefore, the quant i ty   to  be maxi- 

mized is negative time (the same as minimizing positive  time). The payoff J 

(including  the terminal constraints) can be written  with  constant  multipliers, 

v and v2: 1 

J -  - t + v  E + v 2  ( e + @ )  1 at  x=r f (2.10) 

* me angular  direction (e,) is calculated  fran  the  asymptotic  properties of a 
hyperbola. 
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The terminal  conditions  for minimizing t subject   to   the  constraints  on the 

f i n a l  energy and the  final angular  direction are 

A3 - v 2 

X4 -1 

0 P" 
at  
dr + '1 ;G; dE + v2 ( e + @  (2.11) 

For t h e   i n i t i a l  optimum trajectory, the f i n a l  angle is not  constrained 

because t h e   i n i t i a l  angle  for a par t icular   t ra jectory can  be  adjusted so as 

t o  give any desired  final  angle.  In that case,  the  adjoint  variable, hg , i s  

Zero and the  conditions  in Equation (2.11) reduce t o  a simpler set of condi- 

t ions.  

which further eimplif'y t o  

The i n i t i a l  conditions  for  the outward spiral are circular  velocity 

at sane radial distance  (ro). 



vr = 0 
a t  p r o  

The same set of conditions,  circular  velocity at some radial distance, 

s e m s  as terminal  conditione  for the inward  spiral. 

3.2.3 Control  Scheme 

m e  neighboring  optimum  control  scheme  presented  here  results in a 

linear  feedback  control  law  which  attempts to meet the terminal  conditions 

while  maximizing  the  payoff.  Because  the  fourth  state  variable,  time (t), 

is  not  constrained and  does  not  enter  into the equations  of  motion,  it can be 

neglected  In the formulation of the optbum guidance  problem  (even though it 

is the  quantity to be minimized).  Therefore, the  changes in the  state ( a x )  

and 

the 

the  changes in the &Joint (6X) are  both +&ee-vectors, and the change  in 

control (&x) can be written 

+ c 68 3 

where  c  is a  three-vector  of guidance  coefficients  in  the  linear  feedback 

control l a w .  The  guibance  coefficients  c  are  chosen so as to satisfy  linear 

perturbations  on  the  conditions for an optimum  trajectory. 

In particular,  from the  optimizing  condition  in  Equation (2 .8) ,  the 

change  in control is a linear  function of the change  in  the  current value of 

the  adJoint variables. 

-$ 6hl + hl 6% 
& Y =  = aA 6X (2.13) 

X: + $2 

The  effect of changes  in the current  variables  on the variables  at  the  original 

final point can be calculated  numerically by perturbing  the  equations of the 
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system (2.6) and (2.7) after  using  the  optimizing  condition  in  Equation (2.8) 

to  eliminate  the  optimum  control (u). 

(2.14) 

where  the # 'a  are 3x3 transition  matrices.  Linear  perturbations  on  the  ter- 

minal  conditions  and  the  terminal  constraints  result  in  three  conditions  on 

the  values of the  variables  at  the  original  terminal  point  which  can  be 

written 

0 = (Lx 6~ + LA 61) (2.15) r=rf 

where  the L's are 3x3 matrices. 

For  the  outward  spiral,  the  explicit  form  of  the  above  relation  can 

be  written  from  linear  perturbations  of  EQuations (2.9) and (2.11) as a 

set of six  equations  for  nine  unknowns (aX, 61, 6vl,  6v2,  6rf)  and  hence 

results  in  three  conditions  on  the six variables  of  interest.  The  six 

equations  are : 

0 6E = ye 6vg + vr 6vr + - dE 
dr 6rf 

0 -SA3 + 6v2 

(2.16) 
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with  the nominal values v2 a A = 0. 

Combining Equations (2.14), (2.15), and (2.16) and solving for the   control  

(b) i n  terms of the  state (ax) yields  the guidance coefficients 

3 

c 

For the inward spiral,  the  terminal  conditions (2.15) include  the trivial 

condition h = 0 as well a8 two non-trivial  conditions, 3 

0 = 6ve 

0 = 6vr a t  r=r f 

The same analysis as above holds. Because the third state variable,  the 

angular  position (e), is  not  constrained and does not  enter  into  the  equations 

of motion, it can be neglected in  the  formulation of the inward guidance 

problem. I n  t h i s  case, 6x and 6h are both two vectors  instead of three 

vectors. 



3.3 outward spiral 

In this  section  the  optimum  trajectory  for  the  outward  spiral  and  the 

associated  guidsnce  coefficients  are  presented  for a typical  set of initial 

and  final  conditions  and  the  analytic  solution for the  far-planet  region  is 

outlined. For  the  purpose of simplifying  the  presentation,  the  units of a l l  

variables  will  be  normalized so that  both  the  acceleration  of  the  vehicle 

(a) and  the gravitational constan% of the  planet (p) are  unity.  Therefore, 

when  the  (normalized)  radial  distance is unity,  the  acceleration of the 

vehicle  will  be  equal  to  the  gravitational  attraction  of  the  planet;  the 

circular  velocity  will  be  unity;  and  the  period for a circular  orbit  at 

that distance  will  be t = 2n. Table 1 presents a comparison  between  nor- 

malized  and  conventional  units  for  the  planet Earth using two values  for 

the  vehicle  acceleration. 

Table 1 
TWO SETS OF NORMALIZED UNITS FOR EARTH 

a I 0.1 cm/sec 2 0.4 cm/sec 2 

r=l 

-1 

t=l 

Val 

(for =IO) 

400,000 mi 

2600 ft/sec 

9.3 days 

11,600 ft/sec 

36,800 ft/sec 

200,000 m i  

3700 ft/sec 

52,400 ft/sec 

For  the  remainder  of  this  chapter,  these  normalized  units  will  be used instead 

of conventional  units. In general,  the  relation  between  the  variables  using 

conventional  units  (represented by superscript  asterisk,  i.e., r ) and  the 
* 
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E* aF ~3 E 
1 1  

me angular  position 0 is  i n  radians. 

3.3.1 Original  Trajectory 

In  Figure 1 the last few revolutions of a typical  (optimum) outward 

sp i r a l  are presented. Because the acceleration due to   the  planet   gravi ty  

varies  inversely as the  radial distance (r) while  the  vehicle  acceleration 

remains constant,  the  characteristics of the optimum trajectory can best  be 

understood  by dividing  the  trajectory  into  the  three  regions  discussed  in 

the  introduction: (1) the  near-planet  (or small r )  region i n  which the 

gravity  acceleration is much larger  than  the  vehicle  acceleration and the 

t ra jectory  consis ts  of a large number of revolutions  while  the  vehicle 

gradually  spirals away from the  planet; (2) the  transition  region (perhaps 

from r = . 3  t o  r = 2), where the two accelerations are comparable and the 

t ra jectory spiral straightens  out  to approach a hyperbola; and (3) the far- 

planet  (or large r )  region, where the  gravity  acceleration is much less 

than  the  vehicle  acceleration and the  vehicle is propelled t o  a specified 

energy level  while  asymptotically approaching a specific  angular  direction 

on a near  hyperbola. The actual  shape of the  t ra jectory  in   the  t ransi t ion 

region is re la t ive ly  independent of both  the  ini t ia l  and f i n a l  conditions. 

The optimum control  angle (cy) for   the  same trajectory is presented 

i n  Figure 2 (with i n i t i a l  conditions at r = .02 and terminal  conditions a t  

r = lo). The dashed line  represents  the  angle made by the  tangent t o  the 

motion. A t  cutoff  the  thrust  direction  coincides  with  the  direction of 

motion. The behavior of the  control   in   the small r region is  determined from 
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an approximate analytic  solution which is discussed more fully i n  Section 3.4. 

The  optimum control  in  the small r region  consists of a non-periodic term 

growing as r squared plus two separate  oscillations of period  2n in   the 

anguLar position. The first oscil lation, which is  the dominant one sham  in  

Figure 2, grows approximately as r. The second oscil lation, which is due 

t o   t h e   i n i t i a l  conditions and the dynamics of the motion, decays  approxi- 

mately as the square root of r. 

3.3.2 Guidance Coefficients 

The  optimum guidance coefficients (cl, c2, c ) for   the  outward 

spiral,  calculated  according t o  Section 3.2, are presented in  Figure 3 

where the change in  control (b) i s  writ ten 

3 

&Y = c1 dve + c2 6vr + c 69 3 (3.1) 

During the  ent i re   t ra jectory,   the  guidance is  relat ively  insensi t ive  to  

changes in   the  radial velocity ( 6vr). These coefficients  are  called  f ixed-r 

guidance coefficients because r is considered t o  be the independent variable 

and the changes i n  both  the  control and the independent variables are  cal-  

culated as the  difference between the  current  values and the  values on the 

original optimum trajectory compared for   the same radial distance r. 

Under certain  conditions it might  be desirable  to  use  the energy (E) 

88 the independent variable. For instance, one  of the conditions for   the 

r so lu t ion   to  be valid is that   the  variable r be monotonic. For very small 

r it is possible  for  oscil latory terms t o   a r i s e   i n   t h e  radial velocity (v,) 

so that   the  radial velocity changes sign and the radial distance is not mono- 

tonic. Using the monotonic variable energy as the independent variable  cir-  

cumvents this  difficulty.  Fortunately,  the  fixed-energy guidance coeffi- 

cients (with  energy as the independent variable) can  be calculated  directly 

from the  fixed-r  coefficients  without going  through a new solution.  In 
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order to   dis t inguish between the two sets of variables, the  notation con- 

vention tha t  w i l l  be followed in  this  chapter is that the changes w i t h  the 

energy (E) as the independent variable w i l l  use E 88 the argument while the 

changes w i t h  r as the independent variable w i l l ,  i n  general, s t i l l  have 

no argument. Therefore, the optimum fixed-energy guidance coefficients 

w i l l  be writ ten 

6cu = &(E) _- 2 6r(E) 

6ve = 6ve(E) - &(E) 

6vr = 6vr(E) - 2 &(E) 

69 = W(E) - 6r(E) de 
(3.3) 

where 6r(E) = -r 

Substituting Equation  (3.3) into  Quat ion (3.1) and canparing terms w i t h  

EQuation (3.2) yields  the  relation between the two se t s  of coefficients 

2 [ ve 6vg(E) + vr 6vr(E) ] - 

where k = ( c1 (3* 4) 

The fixed-energy guidance coeff ic ients   for   the outward s p i r a l  are 

presented i n  Figure 4. Notice that i n  .the small r region the large oscil la- 

t ions of the fixed-r guidance coefficient c1 are not  present  in the fixed- 

energy  coefficient, cl(E) . 

3 -17 



3.3.3 Analytic  Solution in   t he  Far-Planet Region 

An approximate solution  for  the state and adjoint variables has been 

derived which is valid f o r  large values of radial distance  (r). The solution 

contains  the f irst  few terms of a power series in r-' which sa t i s f ies   the  

differential  equations of the  system (2.6)- ( 2 . 8 ) .  It contains a set of f ive  

arbitrary  constants  (three of which are assumed t o  be small) which can be 

adjusted t o  meet five of the i n i t i a l  and f i n a l  conditions. The sixth con- 

dit ion I s  the  current angular position (0).  

1 

In the   or iginal  optimum trajectory, when the angular  position is not 

constrsined,  the  adjoint vsrisble corresponding t o   t h e  angle i s  zero ( A  = 0), 

and the  terminal  conditions are satisfied when the  three small constants are 

zero. When the angular position is constrained, one of the small constants 

is equal t o  6A = h3 , while two  of the terminal conditions are met by adjust- 

ing the  other two constants. It turns   out   that   the   la t ter  two constante  are 

much smaller  than A so that   they can  be  neglected in   the  remainder of the 

analysis. 

3 

3 

3 

The approximate analytic  solution  for  the variables is 
* 

= a 0 r-T (1 + a&) + h3 

1 1  
v Z 2  r2 ( 1  + a2/r) - a. 27 s r " 1 -1 
r 

= 1 - 314 a. r - 3/2 
h3 

where a. and a2 are arbitrary  constants and A is assumed t o  be 

anguhr distance  the  vehicle travels after the engine is turned 
3 

(3 .5 )  

small. The 

off ( a3 ) can 

be approximated  by the   r a t io  between the circumferential  velocity and the  

*It can be sham  that  Equation ( 3 . 5 )  satisfies the first few terms of the 
equations of motion  and the  terminal  conditions. 
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radial velocity at the point the engine is turned off, 

so the  constrained  asymptotic.  angular  distance (e-) can be writ ten in terms 

of the other variables as 

me  control  angle (a) is equal t o  tan-’ (AJA~) so, f o r  a near n/2 radians, 

the change in control can be wr i t ten   in  terms of the  changes i n   t h e  state 

variables as 

- 6Al 

Thus, the fixed-r guidance coefficients can be determined amly t i ca l ly  

from Equations (3.5) and  (3.6).  For the or iginal  opthum t ra jectory in 

Flgure 1, the  values of the two arbitrary  constants are 

a. = 1.20 

-. 10 “2 = 

The fixed-energy guidance coefficients can  be derived from the fixed-r ones 

in   Quat ion  (3.6) using the tmsformet ion   in   muat ion  (3.4).  For the large 

r analytic  solution the function k is mall  so the two se t a  of analytic 

coefficients are essentially  the same. 
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cl(E) Z c1 

c 2 m  z c2 

c3(E) Z c3 

The numerical r e su l t s   i n  Figures 3 and 4 justif'y t h i s   f o r  r greater  than 

about 2. For the  t ra jector ies  which have been examined, both  the  analytic 

solution and the  analytic guidance coefficients seem t o  be  adequate f o r  r 

greater  than two or  three. 
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3.4 Inward spiral 

In  this   sect ion  the optimum turn-on  point  for  the inward sp i ra l  i s  

derived and the guidance coefficients  are  presented  for a typical  set of 

i n i t i a l  and final  conditions. An approximate analytic  solution is pre- 

sented for   the small r region and the guidance coefficients are derived 

in  closed form. With t h e   i n i t i a l  and final conditions  reversed,  the 

outward sp i r a l  and the optimum control   in  Figures 1 and 2 can be  considered 

as the  or iginal  optimum trajectory and control for  the inward spiral .  The 

only  difference between the inward and outward t ra jector iee  is that   the  

signs of the  velocity components are  reversed (ve and vr are negative fo r  

the inward spiral) .  

3.4.1 Ehgine Turn-On 

There is no angular dependency in   the inward spiral, so dnly two 

independent variables are needed f o r  guidance; for  instance,  the two com- 

ponents of velocity  or, what is  more convenient when considering  engine 

turn-on, the radial distance  (r) and the  angular momentum (h = me). Before 

the engine is  turned on, the energy (Eo) and the angular  momentum (ho) are 

both  constant. It w i l l  be assumed tha t   the  energy of the incoming vehicle 

i s  the same as the energy on the  or iginal  optimum; thus, if the  angular 

momentum is the same too,  the optimum radial dis tance  to   turn on the 

engine w i l l  a lso be the same. Therefore,  the problem is  t o  choose the 

change in   the  radial distance of turn-on  (6r0) as a f inct ion of the change 

i n   t h e   i n i t i a l  angular momentum ( 6ho) so as t o  minimize the  additional loss. 

Furthermore, it would be  desirable  to make use of the numerical  computation 

scheme which has been set up to   calculate   the  f ixed-r  guidance coefficients, 

The notation  introduced  here i s  t ha t  \(E) and h,(E)  are  the  adjoint 

variables  (corresponding t o  h and r )  which give the  sensit ivity of the 
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I 
payoff J t o  changes i n  h and r when the energy E is fixed. The first varia- 

t ion  of the loss is  zero so the  expression which must be minimized involves 

the second variation. "he reason  the first variation is zero is that   the  

sens i t iv i t ies  \(Eo) and Ar(Eo) are  zero at the s t a r t  of the  original 

trajectory because that t ra jectory optimized the ho and ro for  f ixed Eo. 

Therefore,  the loss due t o  small changes i n  h and r is of second order 

and is given by Equation  (4.1). 

2 
6 J (Eo) = 3 6% (Eo) bo + 3 6Ar (Eo) 6r0 (4.1) 

The computation scheme is  set up t o  use r as the independent variable  in 

calculating  the  effect  of small changes in  the  variables at t h e   i n i t i a l  

turn-on  point (6ve , 6vr , 6X1 , 6X2) on the variables at the   f inal   point  

as outlined  in Equation  (2.14). In other words, we do this by perturbing 

the  equations of the system (2.6) and (2.7) after  using the optimizing 

condition  in Equation (2.8) to  eliminate  the  control.  The terminal con- 

s t ra ints   are   c i rcular   veloci ty  at the   f i na l  radial distance  (If). Hence, 

in   o rder   to  meet the  terminal  constraints,  the changes in  the  velocity 

components at the  f inal   radial   d is tance must be  zero. 

0 = Qxx 6xo t- @ X I  6Ao (4.2) 

where the Q's are  2x2 transition  matrices. The fixed-r changes a r e   n w  

expressed i n  terms of the  fixed energy  changes. From the  definit ion of 

angular momentum and the  re la t ion between the two se ts  of variables as pre- 

sented  in Equation (3.3), the  changes in   the  variables can  be writ ten 

r=r 
0 

P 

6h0 

6r0 

P 
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where 

r I 

I 
"""""" 

I I 
J 

and where the left  2x2 matrix ar i ses  from change of independent variable 

from E t o  r. One of the  properties of adjoint  variables is  t h a t   i n  matrix 

notation  they  transform as the  inverse  transpose of the state variables. 

(This property is due t o   t h e   f a c t  that the change in   the  loss  must be  the 

same no matter which set of variables is used. ) Therefore, the  re la t ion 

between adjoint  variables can be writ ten as 

Solving  Equations  (4.2) - (4.4) for   the  re la t ion between the two fixed- 

energy state variables and the two fixed-energy  adjoint 

911 ql2 -1 
921 %2 

where Q = [ ] 

variables yields 

(4.5) 

Substituting Equation (4.5) into  the  expression  for  the loss i n  Equation (4.1) 

gives  the change i n  loss as a quadrattc  f'unction of the changes in  the  angular 
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momentum and the  radialdistance (6h0 and 6ro). The o p t i m  change in   the  

radial dietance for turn-on ( 6 r  ) minimizes the  quadratic  function and 

both 6 r  and the  corresponding  additional loss can be calculated  in terms 
opt 

opt 
of &lo. 

The o p t i m  radial distance  for turn-on (r ) and the  corresponding loss 

are  plotted  in  Figure 5 as a function of angular momentum f o r  the incoming 

sp i r a l  of Figure 1. For comparison, the total normalized  time of the sp i r a l  

in Figure 1 is 9.6 units. 

opt 

3.4.2 Guidance Coef f i c   i en t s  

For the inward sp i ra l   the  guidance depends only on the two velocity 

components 

bcu = c16v + C  0 2 6vr 

The fixed-r guidance coefficients,  calculated  according  to  Section 3.2, are  

presented in  Figure 6. Both coef f ic ien ts  are nearly  constant  in  the  large r 

region.  In  the small r region  the  coefficient c1 has absolute  value  less 

than  unity and osci l la tes  around zero,  while the  coefficient c2 is  much 

larger,  decreasing t o  a minimum of  one and one-half  before r i s ing  at the 

end. The gain  increases  indefinitely  only at the  very end of the inward 

epiral .  

The fixed-energy guidance coefficients  are  presented i n  Figure 7. 

The coefficient c2(E) starts out very Large (above 100) because  near 1=10 
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about 99 percent  of  the  total   energy is i n   t h e  radial component of 

velocity.  Thus, i f  one is  comparing two t r a j ec to r i e s   w i th   t he  same 

energy  and t h e  same circumferential   velocity,   but  different radial velo- 

cities, there  must be a large  difference  in  r which would c a l l   f o r  a 

large change in   control .  

3.4.3 Analytic  Solution  in  the  Near-Planet Region 

The approximate solut ion  in   the small r region  includes a general 

solut ion  to   the  equat ions of the  system (2.6)-  (2.8), which is a parer 

s e r i e s   i n  r t h a t  is well behaved near  the  origin  (as r goes t o  zero),  plus 

a par t icular   solut ion.  The analyt ic   solut ion which has  been  obtained is 

where 

2 2 Bi r-mi sin(-$r + pi> [l + ( - 12 m i )  1 r Ave = 
i= 1 

-2 61 -'I2), h r -3/2 r2  
3 3 

2 

i= 1 
Avr = - 2 Bi cos (-$r + Bi) [l + ( - 12 mi) A r-3/2] - 4 A3r 

-2 61 -3/2 r 4  
3 

2 

i= 1 
Ahl = 2 (k - 16 mi) Bi sin(-+ r" + pi) [I + (5- 2 mi) h r -3/2 ] 3 

2 

i=1 
A$ = - 2 (22 - 8 mi) Bi r-mi cos(-+? + pi) + h r -312 (-3 - 44r ) -2 4 

3 
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and  where B1, B2, and A are small constants  and 0, and B2 are a r b i t r a r y  

constant  angles. 
3 

Appendix A contains a derivation of the so lu t ion   for  the case where 

h3 = 0. Except for phase  differences, B , t h e  arguments of the   s ine  and 

cosine terms (-t r + e,) approxlmte  the  angular  distance 8,  so the   osc i l -  

la tory terms are per iodic   in  e with  period 217. The r dependence of t h e  

i 
-2 

amplitude of t h e   o s c i l h t o r y  terms was obtained  by  the method of averaging 

(see Appendix A). One of the osc i l la tory  terms g r o w s  with r while  the  other 

decays. The solution  has been  checked numerically on t h e   d i g i t a l  ccmputer 

by integrat ing from r = .06 t o  r = .1 (about  eight  revolutions),  and  the 

theore t ica l  and numerical  values  for  the  exponents ml and m matched t o  

within one percent. For  most  of the  numerical   resul ts   presented  in   this  

paper,  numerical  integration was used  darn t o  r = .1 and the  analytic  solu- 

t i o n   f o r  r less than .l. For the   o r ig ina l  optimum trajectory  in   Figure 1, 

A = 0 and the  values of the  other  four  constants are 

2 

3 

B~ = 39 x 10-3 
6 B2 = 66 X 10- 

B, = 27.38 radians 

e, = 23.72 radians 

For the  inward  guidance the  angle is not  constrained, A3 = 0, and four 

constants (pl, B2, B , B ) determine  the motion i n  Equation  (4.7). Four 

conditions on t h e  motion are the two current components of veloci ty  (v and 

v ) and the  two terminal components of veloci ty   (c i rcular   veloci ty  a t  r ). r f 

1 2  

0 
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Therefore,  the four  constants can be calculated  in  terms of r  and  the 

current  velocity  cauponents.  Substituting  that  expression  for the  four 

constants  into  the adjoint variables (bAl and A\) in  Equation (4.7) yields 

the latter  in tenne of the velocity  components as sham in  Equation (4.8). 

f 

(r2 v8 - 1) p" m1 + r2 sinA 
1 

A1 - 1 + (14 + 4 0) (r2 v8 - 1) + 8 
1 

1 - p Q  - ml 

r 
where p = - r < 1  

Because  the  adjoint  variables  are known, both  the  optimum  control 

and the  guidance  coefficients can be  written  in  closed  fonn.  The  guidance 

coefficients  are  obtained  by  differentiating  the  expresaion  for the inverse 

tangent 

Frm Quations (4.8) and (4.9) the  approximate  guidance  coefficients can be 

determined. 

8 SlO P c1 = r 5/2 [ 14 + 4 A0 + 
m2 - ml 

(1 - p"" - m1 ) 3 

(4.10) 

For  small r the  coefficient  c2  is  much  larger than cl,  i.e., the 0ptInn.m 

guidance  is  dependent  primarily  on the radial  velocity  component. 
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The fixed-energy  guidance  coefficients  can be derived f rm t h e  f i z d - r  

ones by using  the  transformation  in Equation (3.4) and t he   r e su l t   ( fo r  small 

r) IS 

It is i n t e r e s t i n g   t o  compare the   ana ly t ic   so lu t ion   for   the  optimum 

trajectory  in  Equation (4.7) with  the  analyt ic   solut ion  for  a family of non-opt i -  

mum t ra jector ies   suggested by Reference (5). Let the  control  angle of the  

non-optimum t ra jec tory  be  given by t a n  (evr/v,) where s is a parameter 

which can take on values such as zero  (for  circumferential  acceleration)  and 

one (for   tangent ia l   accelerat ion) .  Using the  same technique as i n  Appendix A, 

it can  be shown that the approximate ana ly t i c   so lu t ion   fo r   t h i s  non-optimum 

t ra jec tory  is 

-1 

Ave = B r  s in(-+ rm2 + e) * -m 

Avr = - B r  cos (-$ r-2 + e) * -m 

m =  4 
11- s 

where B is a small constant and e is an  arbitrary  constant  angle.  

For the  case of tangential   acceleration,  the non-optimum solution is 

similar t o  that of Reference (5) which uses 0 as t h e  independent  variable. 

For the  case where s is one-half,  the root m i s  2.5 which is  very   c lose   to  

the  root  m2 2.541  in EQuation (4.7). The  non-optimum solution is  not  used 

in   t h i s   r epor t ,   bu t  it is  introduced  here t o  show  how t h e  dynamics of the  

optimum solution compare with a non-optimum eolution. 
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3.5 Engine Misbehavior and Measurement Errors 

The guidance coefficients  derived  in  the  previous  sections  are  based 

on a vehicle  with  constant  acceleration when the  deviations from the  nomi- 

na l  are known exsctly. This section shows how the guidance law must be 

modified t o  account for  both long-term fluctuations  in  acceleration and 

errors i n  measuring the  terminal  value of the state. A method is presented 

for  calculating  the  additional  lose due t o  measurement errore, and numeri- 

ca l   r e su l t s   a r e  given f o r  a simplified model of the system. 

3.5.1 Modified Guidance Law fo r  Engine Misbehavior 

Before one can ta lk  about a guidance l a w  accounting fo r  engine 

fluctuations, it must be assumed that  the  estimated  future  acceleration 

deviations from nominal are  proportional  to  the  present  deviation, Le., f o r  

r '  2 r. 

6a(r') = k (r ' ,  r) &(r)  (5.0 

For example, the estimated acceleration change represented  by k(r', r )  

could  be  exponentially  decaying  with  time  or it could  be  constant. The 

modified  guidance l a w  w i l l  have the form 

bo! = c1 6vg + c 6v + c 60 + c4 6a - 
2 r  3 (5.2) 

where the first three  coefficients  are  the same as before and the  fourth 

allows for   the  expected deviations  in  acceleration. The derivation of 

the modified  guidance l a w  is  based on the  original  derivation of the 

neighboring optinnun control scheme in  Section 3.2 and uses much of the 

same notation. The e f fec t  of small changes in  acceleration (k)  on the 

s t a t e  and adjoint  variables can  be calculated by perturbing  the  equations 

of the system (2 .6)  and (2.7) af ter   using  the optimizing  condition  Equation 

(2.8) to eliminate  the  control.  In  particular,  the  variations of the state 
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and adJoint  variables at the  original  f inal   point  (re)  are given  by 

. ,  
61 

where the notation of Equation (2.14) has been used. 

When the  future  deviations i n  acceleration  6a(r1) are proportional t o   t h e  

current  deviations as i n  Equation (5. I), the h s t  term i n  Equation (5.3) 

can be expressed as a linear  function of 6a(r): 

The terminel  constraints  allowing for 6a(rf) become 

0 = (L, 6x + LA 6h, + La 6a)r (5.5) 

i n  the  notation of Equation (2.15) where La is  a 2x1 vector which gives  the 

effect  of changes i n  t he   f i na l  value of acceleration on the terminal condi- 

tions. For the inward spiral ,  La is zero  because  the  terminal  conditions 

are not a f'unction of acceleration. The change in   control  which is needed 

f 

. 
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t o  meet the  terminal  constraints is calculated as i n  Equation  (2.17)  and 

it is given by 

(5.6) 

which we note has the form of Quation (5.2). 

The modified  guidance coefficient c4 has not been calculated numerically, 

but,for  short term fluctuations  in  acceleration, a very rough approximation 

t o  the  coefficient can  be obtained  relatively simply. If the  acceleration 

deviation lasts f o r  a short  time, the expected future change in   veloci ty  com- 

ponents (6Ce and 6Gr) can  be approximated  by the integral  of the expected 

acceleration  deviation 

rf 
6Ge = COSQ - k ( r ' ,   r )  dr' 6a(r) 

vr 

r f 
6Gr = ,/ - cosQ k (r', r )  dr' 6a(r) 

vr 
r 

Thus,  one might say that an  acceleration  deviation  6a(r) which lasts f o r  a 

short time has approximately the same ef fec t  as deviations i n  the velocity 

components equal t o  6Ge and 6Gr. Under t h i s  assumption, a rough approxima- 

t i o n   t o  the guidance coefficient c4 would be 

'4 = ~1 Jr vr 
- cosa k(r' ,  r) + c2 Jr - COSQ 

V k ( r ' ,   r )  dr' r 

For example, if the expected acceleration decayed exponentially  with  time 

k(r', r) = e -Y  (tf-t) (5.7) 

The approximate  guidance coefficient c4 w o u l d  be 
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C C 
c4 = - COS@ i. - 

Y 
sim 

Y 

If the 

should 

guidance coefficlents  oscil late,   the average  values of cl, c2 and cy 

be  used in   Quat ion (5.8). 

The guidance coefficient  c4 can be calculated  for any fluctuation  in 

acceleration which can be  predicted. For the  special  case where the engine 

has a constant  acceleration bias, a different  approach may be more appropriate. 

Normalized variables were explained  in  Section 3.3 and fo r  most  of the  resul ts  

it has been assumed that a l l  variables have been normalized so that   the  

original  (constant)  acceleration of the  vehicle i s  unity. If the  accelera- 

t ion changes t o  a new constant  value, a l l  the variables can be renormalized 

t o   t h e  new value. For instance, assume tha t  it was suddenly  discovered that 

the engine acceleration was eight  percent  higher  than  the  original  value. 

"he new current (normalized)  values of the   s ta te  variables would be 

r 

v0 
V r 
E 

Furthermore, the new 

than on the  original 

( brf) w o u l d  be  given 

I n  the  ear ly  

i n   t h e   f i n a l  

brf = 

part of 

4% higher 

2% lower 

2$ lower 

4% lower 

(normalized) terminal energy would be  four  percent lower 

optimum trajectory.  The change in  terminal  distance 

bY 

bE / dE 

the spiral ,   the  change in  the  control due t o   t h e  change 

terminal  position can be calculated  in  the same  way as before; 

however, near  the  later part of the  spiral,  both  the  original optimum tra- 

jectory and the guidance coefficients can be written  in  closed form, 80 it 

is only  necessary t o  change rf i n  Equation (3 .6)  for   the  outward spiral ,  or 

Equation (4.10) for the inward spira1,to  obtain  the new guidance coefficients. 
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3.5.2 Md.d.fied Guidance w i t h  Terminal  Errors 
" 

For the  outward s p i r a l   t h e r e  is an  additional  source of loss  because 

te rmina l   e r rors   in   the   ou tgoing   sp i ra l  lead t o  a non-opthum spiral entry 

at the   t a rge t   p l ane t  and, hence,  cause an added fuel expenditure on the 

incoming s p i r a l  as explained  in  Section 3.4. kt he  represent the sensi- 

t i v i t y  of the angular momentum a t  the  arrival planet (ho) t o  changes i n  the 

asymptotic  angular  direction (e,) a t  the  departure  planet so that 

6ho = he 68- 

From Quation (4.6) the change in  the  payoff is 

2 2 6 J = -3 k ( b e , )  

where 

It is  poss ib l e   t o  modify the guidance l a w  

(5.9) 

of   the   ou tgoing   sp i ra l   to  

take  into  account   the  addi t ional   loss   in  Equation (5.9). The payoff 

function J i n  Equation  (2.10) w i l l  be modified from 

J = -t + v1 E + v2 0, 
r=rf 

t o  2 
J = -t + v1 Ii: -4 k (0, - eq) 

=f 

where 8 is  the  asymptotic  angular  direction of the   o r ig ina l  optimum tra- 

jectory when the angle is not  constrained. The analysis  proceeds as before 

except that instead  of 6e, being  constrained t o  zero, 

o+p 

The analyt ic   expression  for   the guidance coef f ic ien te   in   the  Large r region 

i8 derived  in EQuatiOn (3.6) which is 
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where p = rf/r 2 1 . 
Also,  from the   ana ly t i c   so lu t ion   i n  the large r region, an approximate  expres- 

eion for  the adjo in t  variable X is  3 

h3 
1 1  

= 2 2  r2 (x1 - ve/vr) 

From Equations  (5.10)-(5.U) the change in   con t ro l  can be   wr i t ten   in  terms 

of  changes i n  the state variables as 

60 + (p-? - 2’ r7/k) 6(ve/vr) 
1 1 1  

6cu -6A1 = 

(1 - P - ~  + 22 r2/k) 
1 L l  

where p = rf/r 2 1 

For large k, the modified  guidance l a w  i n  Equation (5.13) only  deviates 

from the   o r ig ina l  one i n  Equation ( 3 . 6 )  near  engine  cutoff, and it reduces 

t o   t h e   o r i g i n a l  one as k approaches  infinity. 

The actual  values  of  both he and k w i l l  depend on the pa r t i cu la r   t r i p .  

For instance,   for  a low energy l8O-day t r i p  f rm Earth t o  mrs i n  1975, 

excess  velocit ies a t  departure and a r r i v a l  are about 25,000 f t / sec  and t h e  

value of he is about 10 (mi) /set. For t h i s  t r i p  the normalized  value  of k 

for leaving  the  planet Earth with a = 0.4 cm/sec2 would be about 10 . 
9 2 

4 

For the inward s p i r a l  there is no addi t ional  loss due to   t e rmina l  

errors ,   but  it is p o s s i b l e   t o   r e f o m l a t e  the optimization problem so 86 t o  

specify  the  covariance of the terminal  errors.  We know that  including 

addi t ional   constant   mult ipl iers   in   the loss function is equiva len t   to  mini- 

mizing the loss f’unction subjec t   to   cons t ra in ts  on the  cwariance of the 

terminal   error .   In   par t icular ,   for  the inward spiral, the  payoff J is m o d i -  

f i e d  from 

6 

J - t + v  V + v 2 V r  1 8  
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ve - r -3 
v = O  

A1 .= 

r 

v1 

!2 - v2 
mrr 

t o  
2 2 

J =. - t + 3 kl (ve - r'*) + 3 k2 (v,) 

"f (5.14) 

where kl and k2 are the two constant  multipliers. 

The terminal  errors  (i.  e., the  deviation from circular  velocity a t  the terminal 

point) are due to  errors  in  estimating  the  terminal  value of the  s ta te  as well 

as the   fac t  that the  control may not  drive the estknated  terminal  error t o  

zero.  Therefore, the allowed  terminal  errors must be greater  than  the 

covariance of the  errors  in  estimating  the  terminal state, and they w i l l  

increase as the two constant  multipliers  decrease. 

In the small r region  the optimum control and the guidance coefficients 

for   the modif led payoff in  muation (5.14)  can be obtained in  closed form 

using  the same approach as in  Section 3.4. For the  case where kl = 4 k2 

the new guidance coefficients can be wr i t ten   in  a par t icular ly  simple form, 

-ly, 
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m2 - ml 2 
k(p) = - 

1 
(1 - p-ml + 8 JrO rfT/kl) (1 - P m2'm1 + 8 Jla rf 3 pm2-"l / kl) 

P " -  S l  r 
'f 

For large kl the  modified  guidance  coefficients  in  Equation (5.15) deviate 

from the   o r ig ina l  ones in  Equation  (4.10)  only  near  engine  cutoff, and they 

reduce t o  the o r i g i n a l  ones as k, approaches  infinity.  In  the limit, as r 
.L 

apprcwches r t h e  guidance coeff ic ients  f '  in  Equation  (5.15) became 

2 c1 = rf kl 

c = t k l  = k2 2 

3.5.3 Loss Due t o  State Measurement Errors 

".'. The o r ig ina l   t r a j ec to ry  is optimized with respect   to   the  control  

angle (a), so that ,   wi th  nominal engine  performance, a l l  control  schemes 

which meet the  terminal  conditions  give  the same loss t o  first order. To 

second order,  the change in  payoff between the optimum control  scheme (a ) 

and  any other   control  scheme ((Y) is equal t o   t he   i n t eg ra l   o f  a known function 
opt 

(the  second p a r t i a l  

times the  square  of 

b 2 J  =[ 

derivative  of  the Hamiltonian with respect   to   the  control)  

the  difference  in   control  from t h e  optimum. 

where bCJ is the  second  order change in  payoff. 

When the  optimum guidance l a w  derived  here is used, 

ba, = c1 h e  + c bvr + c 60 2 3 

the only  difference, t o  second  order,  between  the optimum control  and the 

actual   control  is  due to   e r ro r s   i n   e s t ima t ing   t he  state variables  used  in 

the guidance law. The expected  value of the  second  order  change  In  payoff 
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is  a negative  definite  quadratic  f'unction of the covariance of the  errors 

i n  estimating  the state. The conditional mean is  the estimate which mini- 

mizes the covariance of the  error, so it is the  estimate which should be 

used. The expected  value of the change i n  payoff, E [ 6* J] , is  

2 cov  (cl 6ve + c2 6vr + c 6Q) dr 3 

a2H 2 s  

&Y2 

(5.17) 
where - = -(A12 + $ ) /vr and cov means the  covariance  of  the  error 

in  estimation. 

When there   are   errors   in  measuring the independent variable (r), there 

w i l l  be  an  additional  difference between the optimum control and the  actual 

control because of the  error  in  calculating  the  original optimum control 

(a ). In that case,  the  expected  value of the change in  payoff i n  

Equation (5.17) is changed t o  
opt 

3 $ cov (cl 6ve + c2 6v + c 60 - 6r) dr (5.18) 
aY r 3  dr - r 

0 

When there are fluctuations  in engine acceleration,  the loss due t o  

control is  st i l l  second order,  but  there may be a first order change in   the  

loss function which i s  independent of control. The actual  loss is t h e   t o t a l  

mass expenditure, so the loss depends on the mass flow as well as the  elapsed 

time. Because the mass flow (i) may be a function  of  acceleration, i.e., 

6 = i~ (a, t ) ,  changing the  acceleration may r e su l t   i n  a first order change i n  

the mass expenditure. 

6.7 = 6 [  ri~ (a, t ) d t ]  
0 

The second order loss due to   cont ro l  can s t i l l  be  calculated  using 

Equation (5.16), but when there are fluctuations  in engine acceleration, the 
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optirmun  control (a, ) must  allow  for  all  the  fluctuations. If the  future 

acceleration  deviations  are  proportional  to  the  current  deviations  as  shown 

in  Equation (5.1) , and the  modified  optimum  guidance  law  in  Equation (5.2) 

is  used,  the  expected  value  of  the  additional loss includes  the  effect  of 

estimating  the  current  acceleration  deviation, and it  is  given  by 

opt 

E [62J] = ?$ cov (cl  6v + c 6v + c 60 + c4 6a) dr (5.19) 
k2 0 2 r  3 

r0 

If there  are  statistical  fluctuations  in  the  acceleration  which  cannot 

be  predicted  accurately,  these  fluctuations  introduce a second s m c e  of 

loss. In deriving  the  modified  optimum  guidance  law,  the  coefficient  c4 

was calculated  under  the  assumption  that  the  estimated  future  acceleration 

deviation  6a(r')  was  k(r',  r)  times  the  current  deviation  6a(r).  Because 

of  statistical  fluctuations,  the  difference,  6a(r')-k(r',  r)  6a(r), w i l l  

have a probability  distribution  (with  zero  mean).  Therefore,  in  addition to 

Equation (5. lg), there  will  be a second  source  of loss given by 

E [62 J] = rL cov (a dt 
?CY2 

where  the  notation  in  Equation (5.3) is  used,  and 

with 

6; 

6h 
N 

s [  

r 

Notice  that  the  second  source  of  loss  can  be  calculated  numerically  if 

cov [6a(r') - k( r l ,  r) b(r) ] is a known Function. 
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This  covariance depends only on the   s ta t i s t ica l   p roper t ies  of the engine 

fluctuations and not on observation errors. Thus, etat is t ical   f luctuat ions 

i n  engine acceleration  introduce an additional  lose which cannot  be  corrected 

by making more accurate  observations. In  the steady state example given i n  

the  following  section,  only  losses due t o  Equation (5.19) w i l l  be considered. 

3.5.4 Bample with  Steady  State Errors 

When there are both measurement errors  and stochastic  fluctuations 

in  acceleration, it is possible   for   there   to   be a balance between the  gain 

i n  information due t o  additional. meaeurements and the loss in   infomation 

due t o  engine  fluctuations. A simplified mcdel of the system w i l l  be  used 

here  to  represent  error propagation and t o  determine the  steady state 

balance. For this  simplified model, the additional loss (burning  time) 

due t o  measurement errors w i l l  be calculated  numerically  using  representative 

numerical F l u e s  for engine  fluctuations and measurement accuracy and rate. 

It is  assumed that  the  deviations  in  acceleration are exponentially 

correlated so t h a t  

where t * is greater  than t and l /y  could  be  considered  the  correlation time. 

For the purpose of estimation,  time w i l l  be the independent irariable so the 

equations of motion in   Quat ion  (2.1) can be writ ten 

r - 0  d 
at " Y  0 

dt d (me) = ra cosa 

:t 
- " Y  r 
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A three-dimensional  version  of  the  estimation  problem  has  been  derived  for 

a near-Earth  satellite  in  Reference 7. The  fluctuations  in  acceleration 

there  are  due  to  stochastic  fluctuations  in  atmospheric  drag. In that 

paper  there  are  eight  state  variables; a set  of six mean orbit  elements 

which  give  position  and  velocity, 88 well  as  two  additional  state  variables 

which  represent the average  value of the  acceleration  and  the  instantaneous 

deviation  in  acceleration (6s). For the estimation  problem  considered here, 

the  following,  much  simpler  model of the  system  will  be  used. 

The  equations of motion  are 

where u is a white  noise 

E [u(t')  u(t)] = 

6a 

- yiia + u  

process so that 

q 6* (t'-t) 

where  6*(tt-t)  is  the D i r a c  delta  function. 

Noisy  measurements of angular  position 68 are  made  every 'r units of nor- 

malized  time  with  root-mean-square  accuracy 0- radians.  The  system  in 

Equation (5.22) represents  circumferential  motion  where  r60,  6v8, 6a are 

position,  velocity,  and  acceleration,  respectively.  Furthermore,  it  is 

assumed  that (1) the  radial  distance r varies slowly and  is k n m  very 

accurately so that  it  need  not  be  estimated, and (2) the  covariance  in 

radial  velocity  is  assumed  to  be  equal  to  the  covariance  in  circumferential 

velocity  but  uncorrelated  with  it so that 

M 

COY [ 6vr] a coy [be] 
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In the  small  r  region  the  above  assumptions are not  unreasonable,  although 

the  error  in  estimating radial velocity  should  probably  be  somewhat  less 

than that i n  circumferential velocity.  These  assumptions are  not  valid  in 

the large r region, but the  obtained  estimate  of  the  state  covaxiance will 

be  extended to the large r  region anyway. 

k t  P be the 3x3 matrix  which  represents  the  covariance  of the errors 

in estimating the state  r68,  6ve, 6a. The  solution to the  steady  state  ver- 

sion of the  estimation  problem is obtained  from  the  matrix  differential 

equation  representing  the  propagation  of  errors. 899 

where, for the model  presented here, 

i 0 1 0  

0 0 1  

0 0 - y  

s o 0  

0 0 0  

0 0 0  

I -1 

and  the  discrete  measurements  have been approximated by an equivalent  set 

of continuous  measurements. An approximate  solution to Equation (5.23) when 

is  somewhat  smaller  than 1* is 



where p are   the components of the  matrix P. Because pll is the covariance 

of r60, it must be divided by r to   obtain  the covariance of 60. Hence, 

the  covariance of the errors in  60, be, 6a are 

ij 
2 

To obtain  numerical  values for the additional loss due t o  measurement 

errors, let  

s = 10-9 r2 

= 10-3 

The value fo r  s corresponds t o  measurements with a root-mean-square accuracy 

of radians  taken once each normalized uni ts  of time. (From Table 1 

for  the  planet Earth with engine acceleration 0.4 cm/sec , this i s  about once 

each  seven  minutes. ) The value fo r  q  corresponds t o  a steady  state root-mean- 

square  deviation  in  acceleration of about txo percent  with l / y  equal t o  one 

normalized unit of time. (From Table 1, this means t ha t  it takes  about 3.3  

a y s  fo r  a particular  deviation  in  acceleration  to die out. ) 

2 

The additional lose w i l l  be calculated  numerically from Equation (5.19) 

which is repeated  here. 

E [62 J ]=  i y  'f - a2H COY (cl 6vg + c2 6vr + c 60 + c4 6a) dr 
h2 3 

The guidance coeff ic ients   in  Figure 3 are used in   the  outward sp i r a l  modified 

i n  the large r region by Fquation (5.13) which includes  an  additional 106s 



due to   terminal  errors. The guidance coefficient c4 is approximated 

by Equation (5.8) and i n  the large r region c4 rapidly goes t o  zero. 

The additional  loss due t o  measurement errors is almost ent i re ly  due t o  

errors  in  estimating the final angle 8, and it is given  by 

E [6* J] = .75 k * 

where k is defined  in Equation (5.9) and it relates the additional  loss at 

the inward sp i r a l  due to   terminal   errors   in   the outward spiral .  

2 
a2 J = 3 k (68,) 

For k = 10 the  additional normalized  time due to  errors  in  estimating the 

final angle 8, is 7.5 x which, fo r  the case of leaving Earth with a = 0.4 

cm/sec , is only t h i r t y  minutes and i s  extremely small in  comparison with a 

typical burn  time of t h i r t y  days. 

4 

2 

For the inward spiral ,   the guidance coeff ic ients   in  Figure 6 are  

used and i n  the small r region  they  are  modified by Equation (5.15). The 

guidance coefficient c4 is approximated by Equation (5.8). The additional 

loss due t o  measurement errors  1s approximately 

E [" J] = 7. + 4 k2 * loe7 

where the f irst  term is primarily due to  errors  in  estimating 6a i n  the 

large r region and the second term (which includes the constant  multiplier 

k2) is due t o   e r r o r s  in  estimating  the terminal value of Y in   the small r 

region.  Errors  in  estimating 6a are important in  the  large r region  because 

changing the  acceleration a changes the in i t i a l   po in t  a t  which the engine 

should be turned on. merefore, if the i n i t i a l  value of a is not known 

because of measurement errors and engine fluctuations,  the  vehicle is coming 

i n  on a non-0ptInn.m t r a e c t o r y   i n   t h e  lsrge r region. 

r 
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For t h i s  example, a maximum value f o r  the constant  multiplier k2 

might be about 10 because for  that  value  the  modified guidance coefficients 

i n  Equation (5.15) are essentially  the same as the guidance coeff ic ients   in  

Figure 6 u n t i l  less than one revolution  before  the  engine is turned  off. 

For k2 = 10 the  additional  time on the i m r d   s p i r a l  would also be about 

t h i r ty  minutee. Thus, as one might expect, for   the model presented  here 

and long term fluctuations  in  engine  acceleration w i t h  rms value of about 

two percent,  the  additional loss due t o  estimation  errors is quite small 

on both the outward sp i r a l  and the inward spiral .  

3 

3 
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Appendix A 

DERIVATION OF ANALYTIC SOLJJTIOTf FOR 

WEAR-PLANET REGION 

The analytic  solution  for r w i l l  be derived  for  the  case where A is  
3 

zero. The differential  equations which  must be sa t i s f ied  are presented in  

%uation (A. 1) where A is zero and A4 is minus one. 3 

V e A1 - e - -  + 
dr r vr (A: + b2)$ 

dvr 
d r  rv 

v " 2 1  

- =  e r +  b 
r vr (A: + A t ) *  

dAl x1 2ve - =  "- 
d r  r r v b  r 

1 

dA2 (A: + A t ) '  -1 
2 1 

e r v " 
+ - =  

d r  2 
V 

2 
r rv r 

When the A's are  a l l  zero,  Quation (A.2) sa t i s f i e s  Quation (A. l )  up t o  
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r4.* Subst i tut ing EQuation (A.2) i n t o  EQuation (A.l)  and  keeping terms 

of order h/r3 a d  A/r yields  Equation ( ~ . 3 ) .  

AvV8 

Av l r  

AAV1 

- 

I 

i 
j 

A l l 2  j 

1 0 r 4r 
1 

- I  

1 4 
3 r I 2r 

- " 1 1 i  + -  
4r3 -2r j 

i 

Avr 

A%! 

where the prime indicates the derivative  with  respect  to r. 

There are a l s o  terms of order A -  A/r which have  been discarded. 3 

Because there  are terms of  order A/r i n  Equation (A.3) and  because $/r 

approximates de/&, a solution  containing  sines and cosines  suggests itself. 

I n  par t icular ,  a solution of t h e  form of  Equation (A.4), with  the  coeffi-  

c ien ts  A1, 5, C1 and Cg (some slowly varying  functions of r ) ,  satisfies the  

dominant part (A/r 3 t e rns)  of Equation (A. 3) .  

3 3 

A V 1  s i n  0 + A t 2  cos 8 = - - 5 
21- (A1 s i n  9 + cos e )  





c1 = (k - 16 mi) Bi r-mi cos Bi 
i=l 

2 

c2 = 2 (42 - 16 mi) Bi r-mi sin Bi 
ill 

where 

m = .  7 +a0 
2 4 

Substituting  Equation (A.7) into  Equations (A.2) and (A.4) yields the 

analytic solution. For small non-zero X Equation (A.6) and the solution 

i n  EQuation (A.7) are slightly perturbed. 
3’ 
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4. SUMMART 

4.1 Summary of Results 

4.1.1 Midcourse Guidance Using High-Thrust Ehgines (Chapter 2) 

Our studies i n   t h i s  area have been concerned with  extending i n  

various ways the theory of m i n i m u m  effort control developed by Brmic-nll 

and Striebel.' The various extensions and the5r  results can be surrnnarized 

as follows: 

A) Control of Several Terminal Components (Section 5) 

It is  sham that the optimum corrective  strategy  for  controlling 

independently the rms accuracies of the  in-plane and the  aut-of-plane  tenni- 

nal  positions as well as their   velocit ies  has  essentially the same charac- 

t e r i s t i c  as the  unidimensional problem of the  basic minimum e f fo r t  theory. 

!Be optimal  control  history  consiets of an i n i t i a l  period of no control, 

followed by a period of continuous control, and f ina l ly  a period of no 

control  with  possibly an impulse a t  the end. The numerical  computation 

requires  the  proper  guessing of the   ra t io  of the  ini t ia l   values  of adjoint 

variables and, i n  general,  an I terat ive procedure is necessary in   order   to  

satisfy  the  specified  terminal  accuracies. 

B) Optimization of the Control  Histories as well as the Observation  Rate 

and the  Selection Among a Choice of  Observations  (Section 7) 

The problem considered  here is t o  incorporate  into  the  solution of 

the basic minimum effort  theory  the  additional  feature of selecting a most 

advantageous measurement among a choice of observations and the  corresponding 

ra te  of observation  subject to  the  following  constraints:  (1) a maximum 

observation rate and (2) a fixed t o t a l  number of measurements. It I s  s h m  

t h a t   t h e   s o l u t i o n ,   i n   g e n e r a l ,   i n c 1 : l d e s   i n t e r m e d i a t e  values of o b s e r v a t i o n  

rates. "he optimal  policy  consists of periods of measuring separated by 
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periods of no  measurement or  corrective  action. Each  measurement period 

starts at maxinnrm rate with a subperiod  without  corrective  action.  This 

is followed  by a subperiod of gradual  (continuous)  correction and ends with 

an impulsive partial correction of the   t emina l  miss distance. The measur- 

ing   p r ior   to   the  impulse may be ei ther  at maximum rate o r  a t  an intermediate 

lower rate. In  addition, if a choice is available a t  any  time between 

various possible measurements, the optimal solution  automaticSlly  selects 

the one  which is most advantageous. 

C. Optimization of the Control  Histories  Including  the  Effect of  Mechaniza- 

tion  Errors  (Section 8) 

This study  extends  the  basic minumum effort  theory  to  include  the  case 

when  random engine  mechanization errors are taken  into  account.  Included 

are  the engine  execution error,  which is  error   in   the magnitude of the velo- 

city  correction along  the  direction of the  thrust ,  and the  accelerometer 

reading  error, which is an error   in   the knowledge  of the actual amount of 

velocity  correction used. The latter type of error  causes a loss of informa- 

t ion which increases  the  uncertainty of the  orbit .  A computational method 

is found for  obtaining  the  solution of t h i s  problem assuming constant vari- 

ances for  both  types of errors. The method is based on  Dynamic  Programming 

and leads t o  a solution which i s  in  part analytical  and in  p a r t  canputational. 

Typical  results  indicate  that: 

1) Optimum Corrective  strategy is  discrete when engine mechaniza- 

tion  errors  are  included; hence, there  exists an optimum  number of correc- 

t ions  for  a given s ize  of mechanization error.  

2) The  improvement in  velocity  correction  obtained  using more than 

three or  four corrections is negligibly small. 

D. Optimum Nonlinear  Control  Strategy  (Section 9) 

One of the important  simpliFying  assumptions in   the  development of the 



I! 

basic minimum effort  theory is  the requirement tha t   the  magdtude of the 

applied  control  acceleration a t  any time be l inear ly   re la ted (with a variable 

gain) to   the  predicted miss distance a t  t h a t  time. In  the  present study, 

t h i s  assumption is remwed.  For the sake of simplicity,  only a discrete 

system hae been considered. It is sham that a corrective  velocity i s  

applied If, and only if,  the  predicted miss distance a t  the time ti l i e s  

above (or below) a certain number, say z (or  -zi) and that the  effect  of 

the  control is to  bring  the  predicted miss distance after the  correct ion  to  
i 

zi (or  -zi). A relatively simple  computation  procedure for obtaining z 
I 

recursively  based on the technique of Dynamic b o g r m i n g  is given. In  addi- 

tion,  consideration  has  also been given t o   t h e  hard  constraint problem, in  

which the   t o t a l  amount  of velocity  correction  capability is limited and 

specified  in advance. The characterist ic of the  solution is very dlfferent.  

In t h i s  case,  there  exists two numbers, say zi > zi > 0, such tha t  (1) no 

control is applied if the magnitude of the  predicted miss distance is less  

than zi , (2) a l l  the  velocity  capability  available i s  used i f   the  magnitude 

of the  predicted miss is greater  than zi , and (3 )  a certain  intermediate 

m * 

* 
m 

control is  applied  o%hemise. "he zi and zi are m c t i o n s  of the available 
* u-% 

corrective  velocity  capability and appear t o  be obtainable  only  in  tabulated 

form by using Dynamic Programing. 

D. Computer Program f o r  Studying Guidance Problems fo r  Typical  Interplane- 

tary (Section 10) 

Section 10 of  Chapter 2 reported some related work i n  connection  with 

the  study of gujdance  requirements for  typical  interplanetary  tr ips.  A com- 

puter program is developed which (1) performs a l inear  error  analysis of 

typical  interplanetary  trajectories  with assumed nus injection errors and 

* 
This was not required by the  contract. 
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measurement his tor ies ,  and (2) computes a trajectory  correction  strategy 

based on the  basic minimum effort  theory. It includes a n e a r - o p t h   d i s -  

crete  trajectory  correction  strategy  using impulsive corrections whose 

spacings a re  chosen t o  approximate the ideal  continuous strategy. The 

analysis of these near-optimum discrete   s t ra tegies  extends the study by a 

Monte Carlo  simulation t o  include  the  effect of correction mechanization 

errors as well as the ef fec t  of varying  the time of the last correction. 

Orbit  determination is assumed t o  be  based on the information  obtained 

from onboard angular measurements as well as Earth-based radar. Computer 

resu l t s   for  two t r ip s   a r e  given for  typical  injection  errors  indicating 

the  total   velocity  correction as a function of the  required rms accuracy 

for various  information  histories. The two t r ips   a re :  (1) a 2Ok-day t r i p  

t o  Wrs, and (2) a 245-day swingby t r ip ,  Earth-Venus-Mars. 

4.1.2 Planetocentric Guidance Using Low-Thrust Ehgines (Chapter 3) 

me law-thrust  portion of the work i s  concerned with  the guidance 

of a vehicle  with a constant impulse luw-thrust  engine  while  spiraling away 

frm one planet, and la te r ,   in  toward another  planet. Guidance i s  achieved 

by changing the  direction of thrust rather  than  the magnitude. The optimi- 

zation problem - t o  reach a specified escape  energy  with m i n i m  mass expendi- 

tu re  (minimum time, in  this  case) - is solved  using  the  calculus of varia- 

tions;  the guidance problem i s  solved by using a neighboring optimum con- 

t r o l  scheme  which generates a l inear feedback control law which minimizes 

the mass expenditure  while  attempting t o  meet a terminal  constraint on 

direction of escape. The terminal  constralnt  for  the subsequent a r r iva l  

sp i r a l  is horizontal   circular  velocity a t  a desired  radial  distance.  In 

par t icular ,   the   resul ts  of the  study may be summarized as follows: 
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o The optimum guidance coeff ic ients   for   both  the outward  and 

inward s p i r a l  are derived. The guidance l a w  using radial 

distance as the  independent variable is transformed t o  one using 

energy as t h e  independent  variable. 

o In  both  the  near-planet and far-planet  regions,  approximate 

analytic  solutions are derived  for  both  the optimum and 

neighboring optimum t r a j e c t o r i e s  and, i n  sme cases,  these 

permit  the  guidance  coefficients t o  be wr i t ten   in   ana ly t ic  

form. 

o For the  inward sp i r a l ,   t he  opt- turn-on  time is  derived as 

a function of the radial distance and the  angular momentum. 

o The guidance law IS modified t o  account f o r  long term (pre- 

dictable)  f luctuations  in  engine  acceleration and the guidance 

coeff ic ients  are adjusted t o  account   for   the  effect  of measure- 

ment errors   in   es t imat ing  the  terminal   quant i t ies .  The l a t t e r  

adjustment  prevents  the  coefficients from becoming large  without 

bound as the  time  of  engine  cutoff  approaches. 

o A method is  presented  for   calculat ing  the  effect  of measurement 

e r rors  on mass expenditure.  This  error  analysis i s  extended t o  

include  the  case of s t a t i s t i ca l   f l uc tua t ions   i n   eng ine   t h rus t .  

For a simplified mcdel of  the system,  numerical resul ts   are   obtained 

for   the   addi t iona l  mass expenditure. The simplified model i l l u s t r a t e s   t h e  

steady state balance  of  information, i.e., when the loss of  information due 

to   s ta t i s t ica l   f luc tua t ions   in   engine   acce le ra t ion   jus t   ba lances   the   ga in  

In  Information due t o   a d d i t i o n a l  measurements. 

4.2 Publications 

Most of the   inves t iga t ions   p resented   in   th i s  report have  been (or w i l l  

be)  published  in outside journals.   Listed below are the  papers which  have 

4 -5 



been  supported  by  this N4SA Contract NAS 1-3777 from  Iangley  Research 

Breakwell, J. V., and  Tung, F., "Minimum Effort Control of 

Several  Terminal  Components, I' J. SIAM Control,  Ser. A, Vol. 2, 

NO* 3 (196519 PP* 295-316. 

Tung, F., "An Optimal  Discrete  Control  Strategy  for  Interplanetary 

Guidance, IEEX Trans.  Automatic  Control,  AC-10,  July (1965). 

Breakwell, J. V., Tung, F., and  Smith, R. R., "Application  of 

the  Continuous  and  Discrete  Strategies  of  Minimum  Effort  Theory 

to  Interplanetary  Guidance," AIAA Journal, Vol. 3, No. 5, (l965), 

PP * 907- 913 

Tung, F., and  Striebel, C. T., "A  Stochastic  Optimal  Control 

Problem  and  its  Applicatione,  to  appear  in  the J. of  Math. 

Analysis  and  Applications. 

Breakwell,  J. V., "A Doubly  Singular  Problem  in  Optimal  Inter- 

planetary  Guidance,"  to  appear  in  J. SIAM Control,  Ser. A (1965). 

Breakwell,  J. V., and  Rauch, H. E., 'bptimum  Guidance  for a Iar- 

Thrust  Interplanetary  Vehicle,  presented  at  the  AIAA  Guidance 

and  Control  Conference,  Minneapolis,  Minnesota,  August 16-18 (1965). 

4.3 Recommendations 

(I) A three-dimensional  version of the  program  described  in  Section 

2.10 should  be  written  to  serve  a8 a realistic  guide  to  an  optimal  control 

policy  for  high-thrust  interplanetary  trajectories. 

(11)  More  basic  work I s  needed  to  investigate  the  strictly  optimal 

nonlinear  strategies  in  more  than  one  dimension,  whether  In  minimizing  average 

fuel  consumption  for  given  terminal  accuracy  or  in  minimizing  terminal  error 

for fixed  amount of fuel  available. 
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(ill) The  neighboring-optimum  control and error  analysis,  discussed 

in  Section 3 for low-thrust  epiral  trajectories, should be  applied to com- 

bination high and low thntst inhrpbmetary trajectories. 
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